A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices

James T. Kukunas, Robert D. Cupper, and Gregory M. Kapfhammer

Department of Computer Science
Allegheny College, Pennsylvania, USA

Late Breaking Abstracts
The Genetic and Evolutionary Computation Conference (GECCO), July 2010
What is a Resource-Constrained Device?

A Resource-Constrained Device Is . . .

- Any Device In Which Resources Are *Intentionally* Constrained

James Kukunas <jkukunas@acm.org>

A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
What is a Resource-Constrained Device?

A Resource-Constrained Device Is . . .

- Any Device In Which Resources Are *Intentionally* Constrained

James Kukunas <jkukunas@acm.org>
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
Why Do We Intentionally Constrain Resources?

The Goal of This Research is to...

- Achieve BMW Performance With A Honda Motor While Keeping Honda Benefits

James Kukunas <jkukunas@acm.org>

A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
Intel Atom Specifics: In-Order Execution

Out-of-Order Instruction Execution

- Hardware Dynamically Reorders Instructions to Reduce Dependency Stalls in the Pipeline
Intel Atom Specifics: In-Order Execution

In-Order Instruction Execution

Pipeline Sensitive to Dependency Stalls

James Kukunas <jkukunas@acm.org>
Allegheny College
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
Intel Atom Specifics: In-Order Execution

Pipeline Modeling . . .
- At Compile-Time Reduces Dependency Stalls

James Kukunas <jkukunas@acm.org>
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
Intel Atom Specifics: Power-Aware Cache

At Higher Processor Power States . . .

- All Caches Blocks are Enabled

James Kukunas <jkukunas@acm.org>

A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
Intel Atom Specifics: Power-Aware Cache

At Lower Processor Power States . . .

- Cache Blocks are Disabled to Conserve Power
What is the Linux Kernel?

Hardware

CPU Mem Disk Peripherals

A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
What is the Linux Kernel?

System Layout

User Space

Applications

System Calls

Kernel Space

I/O Mem. Mgmt Proc. Mgmt

Interrupts

Hardware

CPU Mem Disk Peripherals

James Kukunas <jkukunas@acm.org>
Allegheny College
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
Precise Fitness Metric

System Calls with Counts > 26

- open
- stat64
- mmap2
- close
- fstat64
- getxattr
- read

Fitness Metric

- System Calls Model User/Kernel Space Interaction

James Kukunas <jkukunas@acm.org>
Allegheny College

A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
Precise Fitness Metric

Only 10% of System Calls had Non-Zero Counts

System Calls with Counts > 26

System Calls
- open
- stat64
- mmap2
- close
- fstat64
- getxattr
- read

System Call Counts (#)
50 100 150 200

James Kukunas <jkukunas@acm.org>
Allegheny College
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices

Initialization: Individual Represents Enabled Compiler Options
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices

James Kukunas <jkukunas@acm.org>
Allegheny College
Genetic Algorithm

- **Initialization**
- **Fitness Operator**
- **Selection and Crossover Operators**

- **Bottom 25% Discarded**
- **Top 75% Reproduce Enough to Replace Bottom 25%**

- **Selection Operator**: Enforces Strong Elitism

James Kukunas <jkukunas@acm.org>
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
Genetic Algorithm

- Initialization
- Fitness Operator
- Selection and Crossover Operators
- Mutation Operator

1% Chance of a Bit Flip

- Mutation Operator: Too Much Mutation Masks Evolution

James Kukunas <jkkukunas@acm.org>
Allegheny College

A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices

Termination Condition: Predefined Generation Count

James Kukunas <jkukunas@acm.org>
Allegheny College
Results Analysis

Results Analysis Technique

- Phoronix Test Suite
- Suite to emulate netbook workload
 - SQLLite
 - GnuPG
 - Ogg
 - CRay
 - SciMark
 - 7Zip
 - GTKPerf
GTK Results

The Fastest Evolved Kernel . . .

- is About 20 Seconds Faster
SQLLLite

The Fasted Evolved Kernel ... is About 140 Seconds Faster

James Kukunas <jkukunas@acm.org>
A Genetic Algorithm to Improve Linux Kernel Performance on Resource-Constrained Devices
Conclusions and Future Work

Conclusions

- Evolved Kernels Outperformed Stock Fedora Kernel
- Genetic Algorithm Excels at Finding Correlations Between Optimizations

Future Work

- More Platforms
- More Compilers
- More GA Options
Conclusions and Future Work

More Information at ...

- Jim Kukunas <jkukunas@acm.org>
- http://member.acm.org/~treak007