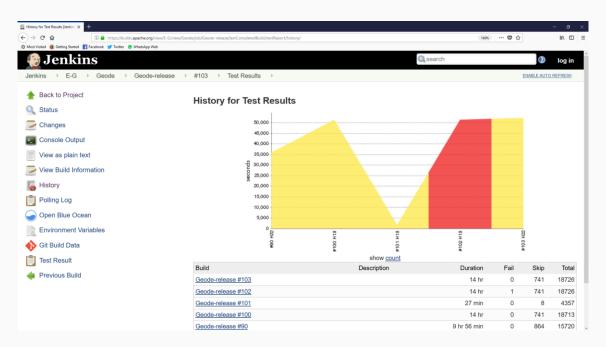
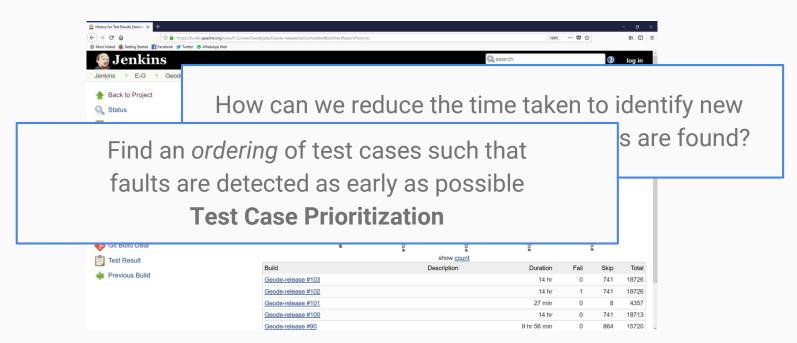
Using Controlled Numbers of Real Faults and Mutants to Empirically Evaluate Coverage-Based Test Case Prioritization

David Paterson
University of Sheffield

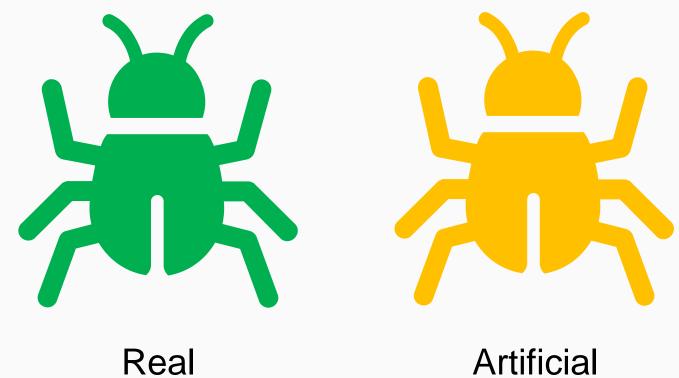

Gregory Kapfhammer Allegheny College Gordon Fraser University of Passau Phil McMinn
University of Sheffield

Workshop on Automation of Software Test 29th May 2018

dpaterson1@sheffield.ac.uk


Test Case Prioritization

- Testing is required to ensure the correct functionality of software
- Larger software → more tests → longer running test suites



Test Case Prioritization

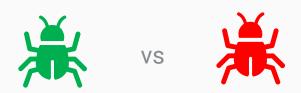
- Testing is required to ensure the correct functionality of software
- Larger software -> more tests -> longer running test suites

Types of Fault

Test Case Prioritization

Strategy A

- 100 subjects
- Evaluated on <u>mutants</u>
- Score = 0.75


Strategy B

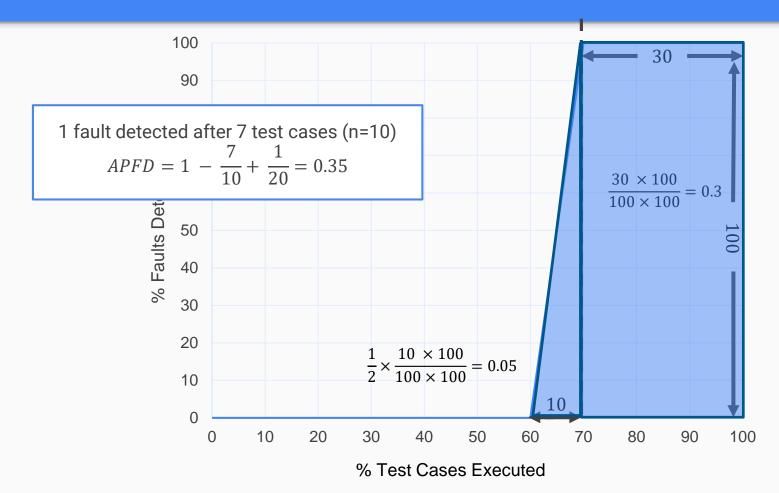
- 100 subjects
- Evaluated on <u>real faults</u>
- Score = 0.72

Which strategy performs the best?

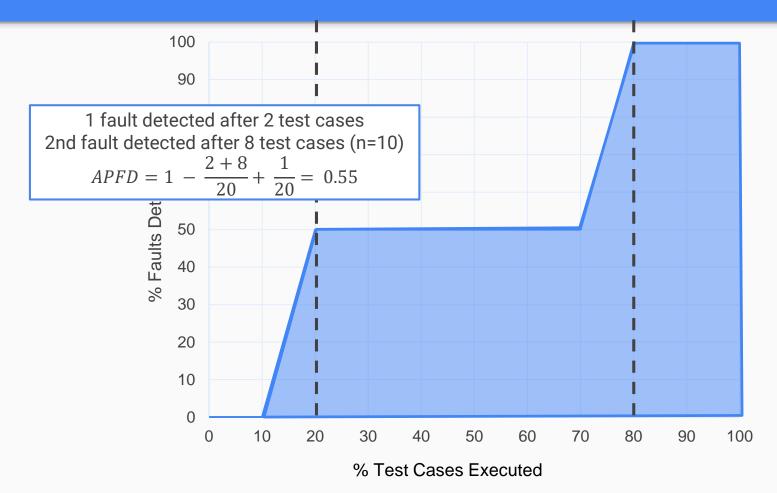
Research Objectives

1. Compare prioritization strategies across fault types

2. Investigate the impact of multiple faults



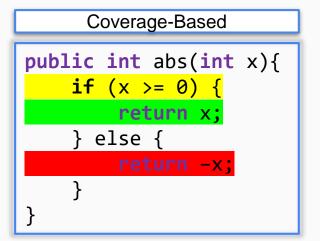
Average Percentage of Faults Detected (APFD)

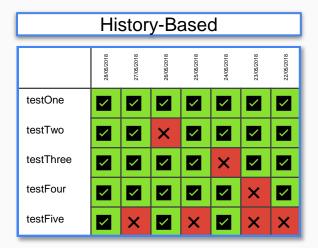

% Faults Found vs % Test Suite executed

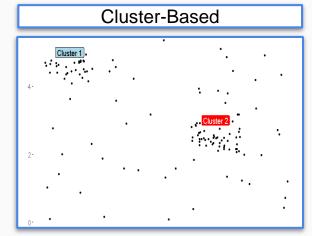
•
$$APFD = 1 - \frac{\sum_{i=1}^{m} TF_i}{mn} + \frac{1}{2n}$$

• TCP aims to **maximize** APFD by **minimizing** TF_i

Test Case Prioritization

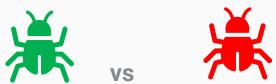



	t_1	t_2	t_3	t_4	t_5	<i>t</i> ₆	<i>t</i> ₇	t_8	t_9	t ₁₀	APFD
Version 1	✓	×	✓	✓	✓	✓	✓	✓	✓	✓	-
Version 2	✓	×	✓	✓	✓	✓	×	✓	✓	✓	0.55
Version 3	✓	×	✓	×	✓	×	✓	✓	✓	✓	0.45


Test Case Prioritization

	<i>t</i> ₁	<i>t</i> ₈	t_{4}	<i>t</i> ₅	<i>t</i> ₇	t_9	t_2	t ₁₀	<i>t</i> ₆	<i>t</i> ₃	APFD
Version 1	✓	✓	✓	✓	✓	✓	×	✓	✓	✓	-
Version 2	/	/	✓	/	×	✓	×	/	✓	/	0.85
Version 3	✓	✓	×	✓	✓	✓	×	✓	×	✓	0.8

Techniques

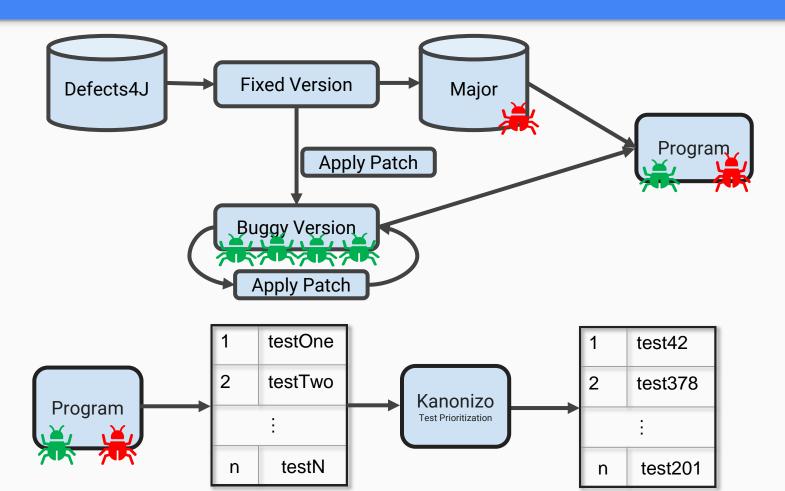


Evaluation

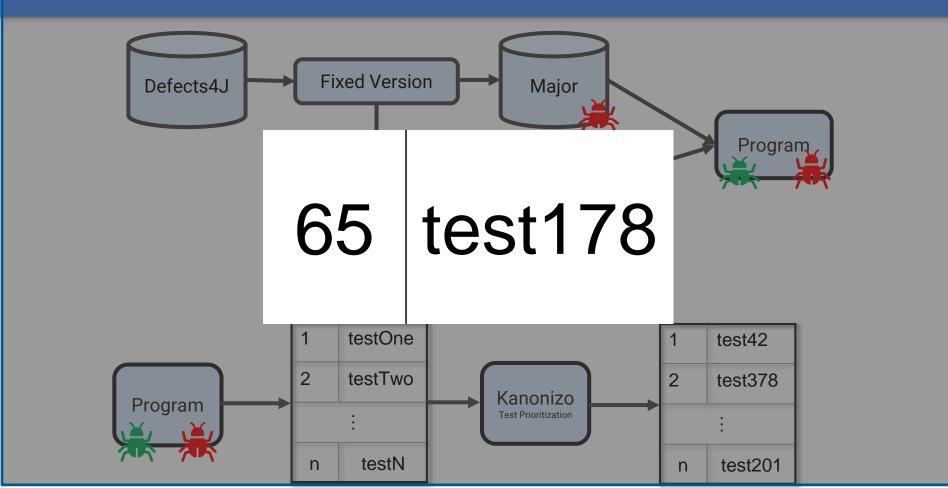
RQ1: How does the effectiveness of test case prioritization compare between a single real fault and a single mutant?

RQ2: How does the effectiveness of test case prioritization compare between single faults and multiple faults?

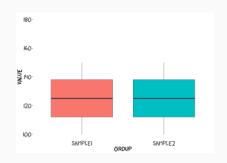
Subjects

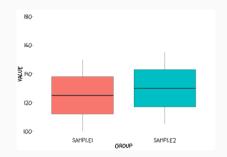

• **Defects4J**: Large repository containing 357 real faults from 5 open-source repositories [1]

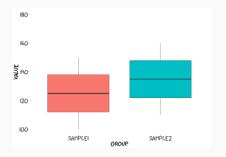
Project	GitHub	Number of Bugs	KLOC	Tests
JFreeChart	https://github.com/jfree/jfreechart	26	96	2,205
Closure Compiler	https://github.com/google/closure-compiler	133	90	7,927
Apache Commons Lang	https://github.com/apache/commons-lang	65	85	3,602
Apache Commons Math	https://github.com/apache/commons-math	106	28	4,130
Joda Time	https://github.com/JodaOrg/joda-time	27	22	2,245

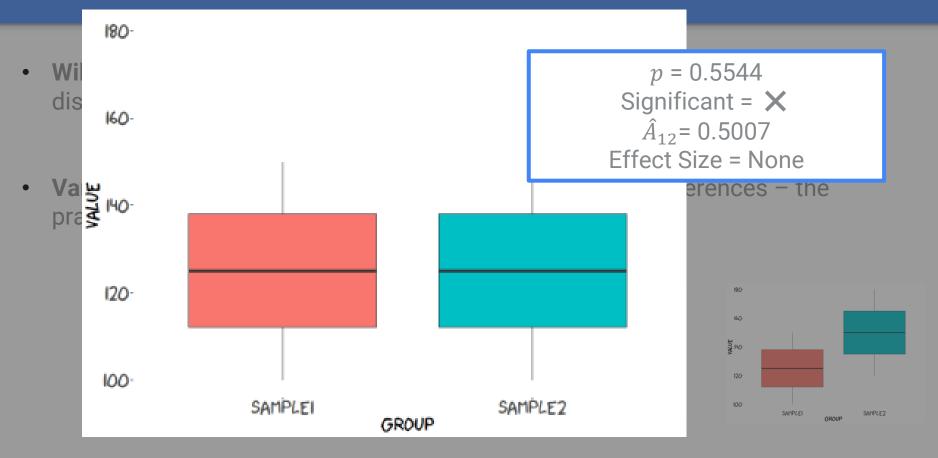

Contains developer written test suites

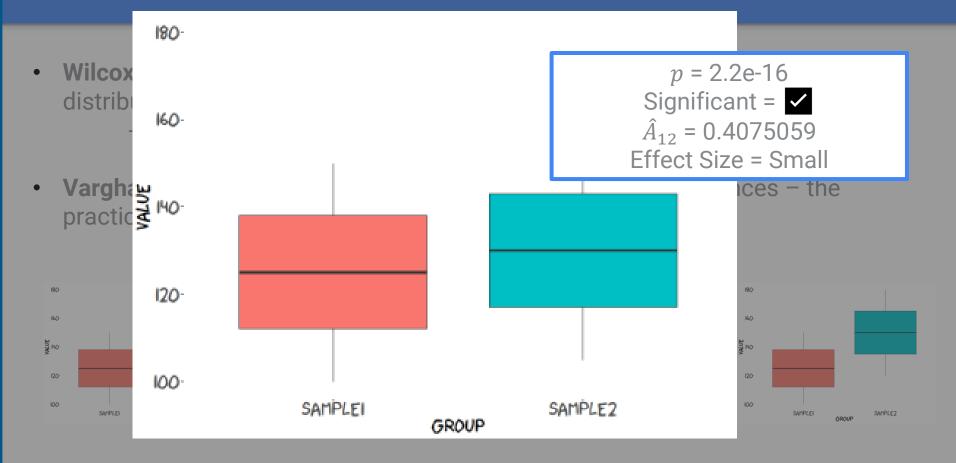
Provides 2 versions of every subject – one buggy and one fixed

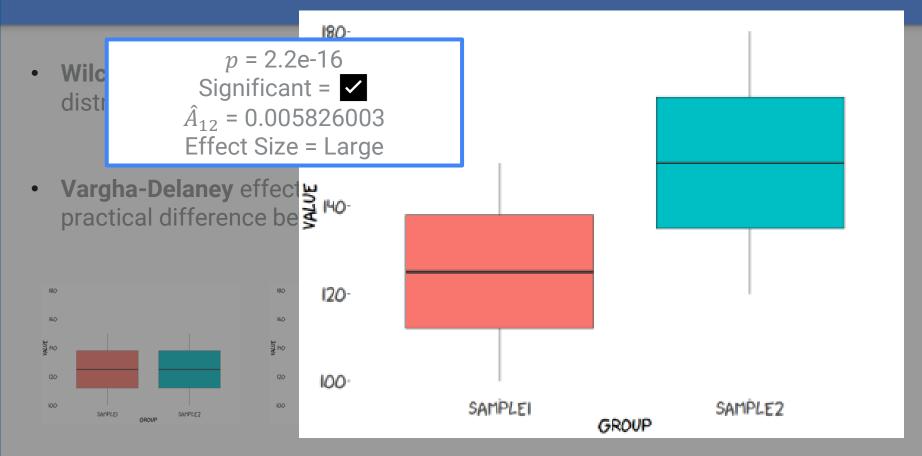

Experimental Process




Experimental Process


- Wilcoxon U-Test measures likelihood that 2 samples originate from the same distribution \boldsymbol{p}
 - Significant differences occur often when samples are large
- Vargha-Delaney effect size calculates the magnitude of differences \hat{A}_{12} the practical difference between two samples





Comparisons

RQ1 RQ2

Strategy 1	Strategy 2	Fault Type 1	Fault Type 2	Strategy 1	Strategy 2	Faults 1	Faults 2	Faults 3
A	А	Real	Mutant	А	A	1	5	10
A	В	Real	Real	А	В	1 real	5 real	10 real
Α	В	Mutant	Mutant	Α	В	1 mutant	5 mutant	10 mutant

RQ1: Real Faults vs Mutants

• APFD is significantly higher for mutants than real faults in all but one case

On average, over 10% additional test cases were required to find the real faults

Project	Real	Mutant	Test Cases	Difference
Chart	703.4	498.5	1826.0	11.2%
Lang	818.9	611.4	1960.8	10.6%
Math	1461.7	815.8	3566.9	18.1%
Time	1341.9	683.4	3929.1	16.8%

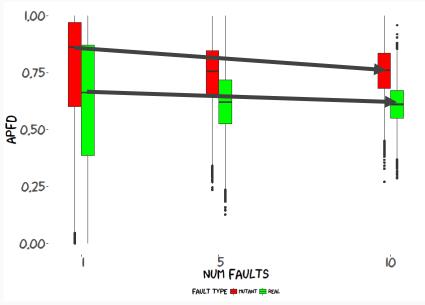
 For real faults, 3 out of 16 project/strategy combinations significantly improve over the baseline, compared to 10 out of 16 improvements for mutants

RQ1: Real Faults vs Mutants

• APFD is **significantly higher** for **mutants** than **real faults** in all but one case

On average, over 10% additional test cases were required to find the real faults

Project	Real	Mutant	Test Cases	Difference
Chart	703.4	498.5	1826.0	11.2%
Lang	818.9	611.4	1960.8	10.6%
Math	1461.7	815.8	3566.9	18.1%
Tr.	10110	(00.4	2000 1	1 (0 ~


• For **real faul** baseline, co

Test Case Prioritization is much more effective for mutants than real faults

rove over the

RQ2: Single faults vs Multiple Faults

Variance in APFD scores <u>significantly</u> reduces as more faults are introduced

In <u>37/40</u> cases, median APFD decreased as more faults are introduced
 APFD punishes test suites that are not able to find <u>all</u> faults

RQ2: Single faults vs Multiple Faults

• However, **real faults** and **mutants** still disagree on the effectiveness of TCP techniques

- For **real faults**, there is very rarely any practical difference when including more faults
 - 17 of 40 comparisons are significant, of which 3 are Medium or Large effect size

- For **mutants**, increasing the number of faults makes the results clearer
 - 35 of 40 comparisons are significant, of which 16 are Medium or Large effect size
 - Effect size increases in **all but one** case for more faults

RQ2: Single faults vs Multiple Faults

• However, **real faults** and **mutants** still disagree on the effectiveness of TCP techniques

• For **real faults**, there is very rarely any practical difference when including more faults
- 17 of 40 comparisons are significant, of which 3 are **M**edium or **L**arge effect size

- For mutants, increasing the number of faults makes the results also re-
 - 35 of
 - Effect

Using more faults <u>lessens</u> the effect of randomness, but still does not make mutants and real faults consistent

e effect size

Real Faults vs Mutants

Real faults are much more complex than mutants

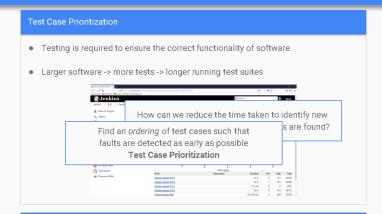
```
for (final EventState state : eventsStates) {
    state.stepAccepted(eventT, eventY);
   isLastStep = isLastStep || state.stop();
// handle the first part of the step, up to the event
for (final StepHandler handler : stepHandlers) {
   handler.handleStep(interpolator, isLastStep);
if (isLastStep) {
   // the event asked to stop integration
    System.arraycopy(eventY, srcPos: 0, y, destPos: 0, y.length);
    return eventT;
boolean needReset = false;
for (final EventState state : eventsStates) {
    needReset = needReset || state.reset(eventT, eventY);
if (needReset) {
   // some event handler has triggered changes that
   // invalidate the derivatives, we need to recompute them
    System.arraycopy(eventY, srcPos: 0, y, destPos: 0, y.length);
    computeDerivatives(eventT, y, yDot);
    resetOccurred = true;
    return eventT;
```

Real Faults vs Mutants

Real faults are much more complex than mutants

```
currentEvent.stepAccepted(eventT, eventY);
isLastStep = currentEvent.stop();
// handle the first part of the step, up to the event
for (final StepHandler handler: stepHandlers) {
```

8 lines of code <u>deleted</u> 9 lines of code <u>added</u>

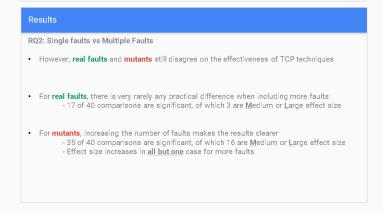

```
boolean needReset = currentEvent.reset(eventT, eventY);
if (needReset) {
    // some event handler has triggered changes that
    // invalidate the derivatives, we need to recompute them
    System.arraycopy(eventY, srcPos: 0, y, destPos: 0, y.length);
    computeDerivatives(eventT, y, yDot);
    resetOccurred = true;
    for (final EventState remaining : occuringEvents) {
        remaining.stepAccepted(eventT, eventY);
    }
    return eventT;
}
```

Real Faults vs Mutants

- Real faults are much more complex than mutants
 - On average, fixing a **real fault** added 1.98 lines and removed 7.2
 - Fixing a **mutant** is always **max** +/- 1 line

- This results in more test cases detecting mutants
 - On average, 3.18 test cases detected single real faults
 - Meanwhile, 57.38 test cases detected single mutants

Summary


Results RO1: Real Faults vs Mutants · APFD is significantly higher for mutants than real faults in all but one case . On average, over 10% additional test cases were required to find the real faults Real Mutant Test Cases Difference Project Chart 703.4 498.5 1826.0 11.2% 611.4 1960.8 10.6% 818.9 1461.7 815.8 3566.9 18.1% 683.4 3929.1 Time 1341.9 16.8% . For real faults, 3 out of 16 project/strategy combinations significantly improve over the baseline compared to 10 out of 16 improvements for mutants

Strategy A

• 100 subjects
• Evaluated on mutants
• Score = 0.75

Score = 0.72

Which strategy performs the best?

Tool: Data:

https://github.com/kanonizo/kanonizo https://bitbucket.org/djpaterson/ast2018_data