What is an Agent?
Restricting the definition of an **agent**: an ideal agent

- **Autonomy**: The ability to operate without the direct intervention of humans or others, and have some kind of control over their actions and internal state.
Restricting the definition of an **agent**: an ideal agent

- **Autonomy**: The ability to operate without the direct intervention of humans or others, and have some kind of control over their actions and internal state.
- **(Structural) Reactivity**: The ability to perceive the environment, and respond regularly to changes that occur in it.
Restricting the definition of an **agent**: an ideal agent

- **Autonomy**: The ability to operate without the direct intervention of humans or others, and have some kind of control over their actions and internal state.
- (Structural) **Reactivity**: The ability to perceive the environment, and respond regularly to changes that occur in it.
- **Social Ability**: The ability to interact with other agents (and possibly humans).
Restricting the definition of an agent: an ideal agent

- **Autonomy**: The ability to operate without the direct intervention of humans or others, and have some kind of control over their actions and internal state.

- **(Structural) Reactivity**: The ability to perceive the environment, and respond regularly to changes that occur in it.

- **Social Ability**: The ability to interact with other agents (and possibly humans).

- **Pro-Activity**: The ability to exhibit goal-directed behavior by taking the initiative instead of just acting in response.
Agents vs. Objects

<table>
<thead>
<tr>
<th></th>
<th>OOP</th>
<th>AOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic unit</td>
<td>object</td>
<td>agent</td>
</tr>
<tr>
<td>Parameters defining</td>
<td>unconstrained</td>
<td>beliefs, commitments,</td>
</tr>
<tr>
<td>state of basic unit</td>
<td></td>
<td>capabilities, choices,</td>
</tr>
<tr>
<td>Process of computation</td>
<td>message passing and</td>
<td>message passing and response methods</td>
</tr>
<tr>
<td></td>
<td>response methods</td>
<td></td>
</tr>
<tr>
<td>Types of message</td>
<td>unconstrained</td>
<td>inform, request, offer,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>promise, decline, ...</td>
</tr>
<tr>
<td>Constraints on methods</td>
<td>none</td>
<td>honesty, consistency, ...</td>
</tr>
</tbody>
</table>
Agents vs. Objects

- Agents may communicate using an Agent Communication Language; objects communicate via fixed method interfaces.
Agents vs. Objects

- Agents may communicate using an Agent Communication Language; objects communicate via fixed method interfaces.
- Agents have the quality of volition.
 - using AI techniques, intelligent agents are able to judge their results, and then modify their behavior (and thus their own internal structure) to improve their perceived fitness.
Agents vs. Objects

- Agents may communicate using an Agent Communication Language; objects communicate via fixed method interfaces.

- Agents have the quality of volition.
 - using AI techniques, intelligent agents are able to judge their results, and then modify their behavior (and thus their own internal structure) to improve their perceived fitness.

- Objects are abstractions of things like invoices. Agents are abstractions of intelligent beings – they are essentially anthropomorphic.
 Note that this does not mean that agents are intelligent in the human sense, only that they are modeled after an anthropomorphic architecture, with beliefs, desires, etc.
Agents vs. Objects

- Design an object-oriented solution and an agent-oriented solution for a car wash task.
- Identify why it is an object-oriented or an agent-oriented solution.
- List agents and objects for both solutions.
Restricting the definition of an **agent**: an ideal agent

Other attributes:

- **Mobility**: The ability to move around an electronic network.
Restricting the definition of an **agent**: an ideal agent

Other attributes:

- **Mobility**: The ability to move around an electronic network.
- **Veracity**: The assumption of not communicating false information knowingly.
Restricting the definition of an agent: an ideal agent

Other attributes:

- **Mobility**: The ability to move around an electronic network.
- **Veracity**: The assumption of not communicating false information knowingly.
- **Benevolence**: The assumption of not having conflicting goals.
Restricting the definition of an **agent**: an ideal agent

Other attributes:

- **Mobility**: The ability to move around an electronic network.
- **Veracity**: The assumption of not communicating false information knowingly.
- **Benevolence**: The assumption of not having conflicting goals.
- **Rationality**: The assumption of acting with a view to achieve its goals, instead of preventing them.
A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date.

A system is rational if it does the “right thing”, given what it knows.
Getting to an ideal agent

Agent types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents
- learning agents
Simple Reflex Agent

Agent

Sensors

What the world is like now

Actuators

What action I should do now

Condition–action rules

Environment
Simple Reflex Agent - An Example

```
function REFLEX-VACUUM-AGENT([location, status]) returns an action
    if status = Dirty then return Suck
    else if location = A then return Right
    else if location = B then return Left
```
Reflex Agent with State

Agent

- State
- How the world evolves
- What my actions do
- Condition–action rules
- What the world is like now
- What action I should do now

Environment

Sensors

Actuators
function REFLEX-VACUUM-AGENT([location, status]) returns an action
static: last_A, last_B, numbers, initially ∞
 if status = Dirty then …
Goal-based Agent

Agent

Environment

Sensors

State

How the world evolves

What the world is like now

What it will be like if I do action A

What my actions do

Goals

What action I should do now

Actuators
Utility-based Agent

- **Agent**
 - State
 - How the world evolves
 - What my actions do
 - Utility

- **Environment**
 - Sensors
 - Actuators

- **Utility**
 - What the world is like now
 - What it will be like if I do action A
 - How happy I will be in such a state
 - What action I should do now
All the previous agents can be turned into learning agents
Agent Summary

- Agents interact with environments through actuators and sensors.
Agents interact with environments through actuators and sensors.

The agent function describes what the agent does in all circumstances.

Agent Summary
Agent Summary

- Agents interact with environments through actuators and sensors
- The **agent function** describes what the agent does in all circumstances
- The **performance measure** evaluates the environment sequence
Agent Summary

- Agents interact with environments through actuators and sensors
- The **agent function** describes what the agent does in all circumstances
- The **performance measure** evaluates the environment sequence
- A **perfectly rational** agent maximizes expected performance
Agent Summary

- Agents interact with environments through actuators and sensors
- The **agent function** describes what the agent does in all circumstances
- The **performance measure** evaluates the environment sequence
- A **perfectly rational** agent maximizes expected performance
- **Agent programs** implement (some) agent functions
Agent Summary

- Agents interact with environments through actuators and sensors
- The agent function describes what the agent does in all circumstances
- The performance measure evaluates the environment sequence
- A perfectly rational agent maximizes expected performance
- Agent programs implement (some) agent functions
- PEAS descriptions define task environments
Agent Summary

- Agents interact with environments through actuators and sensors
- The agent function describes what the agent does in all circumstances
- The performance measure evaluates the environment sequence
- A perfectly rational agent maximizes expected performance
- Agent programs implement (some) agent functions
- PEAS descriptions define task environments
- Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?
Agent Summary

- Agents interact with environments through actuators and sensors.
- The **agent function** describes what the agent does in all circumstances.
- The **performance measure** evaluates the environment sequence.
- A **perfectly rational** agent maximizes expected performance.
- **Agent programs** implement (some) agent functions.
- **PEAS** descriptions define task environments.
- Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?
- Several basic agent architectures exist: reflex, reflex with state, goal-based, utility-based, learning.