Last Time

• Quick sort:
 – Partition an array into two halves around a fixed pivot
 – Try to partition each half
 • Partition an array into two halves around a fixed pivot
 • Try to partition each half
 – Partition an array into two halves around a fixed pivot
 – Try to partition each half
 » Partition an array into two halves around a fixed pivot
 » Try to partition each half
String Searches

• How can we search for a string?
 – Store them in a data structure that we’ve already talked about? Array, list, tree, BST, Hash table?

• What if we had a data structure designed with complexity W, where W is the length of the string?
 – Search hits take time proportional to the length of the search key.
 – Search misses take a few characters, until we know that the search key cannot be in the data structure.
Trie

• Composed of nodes, just like our other tree data structures.
 – One root node.
 – Each node has 1 value and R child links, corresponding to the R possible next letters.
Trie – Visual

1. Characters are implicitly defined by the link index.
2. Each node has an array of links and a value.
Trie

• Composed of nodes, just like our other tree data structures.
 – One root node.
 – Each node has 1 value and R child links, corresponding to the R possible next letters.

• Search: Follow the child nodes. If you get to the end of the string and there’s a value, return the value. If not, return null. If you ever hit a null link, return null.

• Insertion: Follow the search process. If you get to the end of the string, add the value. If you ever hit a null node, add new nodes.
Trie

Node put(Node x, String key, Value val, int d) {
 if (x == null) {
 x = new Node();
 } //if
 if (d == key.length()) {
 x.val = val;
 return x;
 } //if
 char c = key.charAt(d);
 x.next[c] = put(x.next[c], key, val, d+1);
 return x;
} //put
Trie

Value get(String key) {
 Node x = get(root, key, 0);
 if (x == null) {
 return null;
 } //if
 return (Value) x.val;
} //get

Node get(Node x, String key, int d) {
 if (x == null) {
 return null;
 } //if
 if (d == key.length()) {
 return x;
 } //if
 char c = key.charAt(d);
 return get(x.next[c], key, d+1);
} //get
Trie – Simpler Visual

- **Key** and **Value** are associated with each node.
- **Root** is the starting point.
- **Value** is in a node corresponding to the last character.
- **Key** is a sequence of characters from root to value.
- **Nodes** corresponding to characters at the end of the key do not exist, so cross them until set the value of the last one.
- **One node** for each key character.

Examples:
- *she*: value is 0
- *by*: value is 4
- *sells*: value is 1
- *the*: value is 5
- *sea*: value is 2
- *shells*: value is 3
- *shore*: value is 7
Trie – Analysis

• **Theorem:** The number of array accesses when searching in a trie or inserting a key into a trie is at most $1 + \text{the length of the key}$.

• **Proof:** Immediate from the code.
 – The `put()` and `get()` implementations carry the `d` argument.
 – `d` starts at 0, increments at each level, and is used to stop the recursion when it reaches the key length.
Trie – Analysis

• **Theorem:** The number of links in a trie is between RN and RNw, where w is the average key length.

• **Proof:** Immediate from the code.

 – Every key in the trie has a node containing R links, so the number of links is at least RN.

 – If the first characters of all of the keys are different, then there is a node with R links for every key character, so the number of links is R times the total number of characters, or RNw.

• In other words, lots of wasted space.
de la Briandais Trie

• Old version: Node = value + R links
• New version: Node = value + 2 links
 – Link 1: reference to child node (move to next level)
 – Link 2: reference to sibling node (stay on same level)

• Notice that now we need to store the key as a character, rather than use them as indices.
de la Briandais Trie

bye, by, get, got, gets
de la Briandais Trie - Analysis

• In the worst case, with an R-character alphabet and a string of length w, our search time is Rw, because we search through all R characters on level i before moving to level $i + 1$.

• In the average case, our search time is $\sim \log_R(w)$, since we won’t search through all of the characters before moving levels, and based on the level-sparsity rationale from the regular trie analysis.
 – For small N, search time is just $\sim w$.
Any Questions?