Last Time

- Sets
- Union, Intersection, Complement
- Venn Diagrams
- Sequences
- Cartesian Products
- Functions
- Alphabets, Strings, Languages
Proofs

• What is a proof?
 – Logical argument that a statement is true
 – Beyond any doubt
 – Starts with known facts (axioms)
 – Builds to a conclusion with logical steps
 – Deductive reasoning
Other Useful Vocabulary

• **Definition** – describes the objects and notions that we use

• **Theorem** – a mathematical statement proven to be true

• **Lemma** – a mathematical statements that we prove along the way, but aren’t as interesting

• **Corollary** – a mathematical statement related to a theorem proven to be true

• **Conjecture / Hypothesis** – an unproven statement
Proof Design

• “P if and only if Q” \((P \leftrightarrow Q) \) means you need to prove two parts:
 – “If \(P \) is true, then \(Q \) is true” (forward direction)
 – “If \(Q \) is true, then \(P \) is true” (backward direction)
 – This is usually seen in equality statements (example later).
Proof Strategies

1. Understand the statement that you want to prove.
 – Do you understand the notation?
 – Rewrite the statement in your own words.
 – Break it down and consider each part separately if necessary.
Proof Strategies

2. Try to get a “gut” feeling of why the statement should be true.
 – Experiment with examples.
 – Try to find a counterexample that shows that the statement isn’t true. See where you run into difficulty.
3. Try to prove a simple case.
 – If you need to prove a statement for all natural numbers, start by proving that it’s true for 1 or 2.
 – If the simple case you pick turns out to be too hard, pick a different one.
Proof Strategies

4. Write the proof up properly.
 – The proof should be a sequence of statements, with each statement following from some set of previous statements.
 – Read through a second time to make sure you haven’t introduced an error or omitted an important step.
 – End a proof with Q.E.D. or □.
Proof Strategies

• Other tips:
 – **Be patient** – proofs aren’t the easiest thing in the world to produce.
 – **Come back to it later** – sometimes letting yourself subconsciously consider it is an effective strategy.
 – **Be neat** – it’s easier to organize your thoughts in the end when you can clearly understand the process you took.
 – **Be concise** – the more verbose you are, the more likely you are to introduce an error.
Example

• Prove the following:

For any two sets A and B, $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Forward direction: Suppose that x is an element of $\overline{A \cup B}$. Then x is not in $A \cup B$ from the definition of the complement of a set. Therefore, x is not in A, and x is not in B, from the definition of the union of two sets. In other words, x is in \overline{A} and x is in \overline{B}. By the definition of the intersection of two sets, x is hence in $\overline{A} \cap \overline{B}$.

Backward direction: Suppose that x is in $\overline{A} \cap \overline{B}$. Then, x is in both \overline{A} and \overline{B}, by the definition of the intersection of two sets. Therefore, x is not in A and x is not in B, and thus not in the union of these two sets. Hence, x is in the complement of the union of these sets: $\overline{A \cup B}$. ■
Types of Proof

1. Proof by Construction ("Direct Proof")
2. Proof by Contradiction
3. Proof by Induction

• This is not an exhaustive list.
• Some problems will use more than one of these over the course of the proof.

• Other proof types
1. Proof by Construction

- **Used for:** A conjecture states that a particular type of object exists.
- **Proof goal:** Demonstrate how to construct such an object.
1. Proof by Construction

• Prove the following:
 If a and b are consecutive integers, then the sum $a+b$ is odd.

Definition: An integer number is **odd** if and only if there exists an integer k such that $n = 2k+1$.

Definition: Two integers a and b are **consecutive** if and only if $b = a+1$.

Proof: Assume that a and b are consecutive integers. Because a and b are consecutive, we know that $b = a+1$. Thus, the sum $a+b$ may be re-written as $a+(a+1) = 2a+1$. Thus, there exists a number k such that $a+b = 2k+1$, so the sum $a+b$ is odd. ■
2. Proof by Contradiction

- **Used for:** A conjecture states that a particular statement is true.
- **Proof goal:** Assume that the statement is false, then show that if it were false, it would lead to absurd or unworkable conclusions.
2. Proof by Contradiction

• Prove the following:

\[\sqrt{2} \text{ is irrational.} \]

Definition: A number is **rational** if it can be written as \(m/n \), where \(m, n \in \mathbb{Z} \).

Definition: An integer number is **even** if and only if there exists an integer \(k \) such that \(n = 2k \).

Proof: Assume to reach a contradiction that \(\sqrt{2} \) is rational. Thus, \(\sqrt{2} = m/n \) for some integers \(m \) and \(n \). If both \(m \) and \(n \) are divisible by the same integer greater than 1, divide both by that integer. Doing so doesn’t change the value of the fraction. Now, at least one of \(m \) and \(n \) must be an odd number.
2. Proof by Contradiction

Without changing the equality of the equation, we can multiply both sides by \(n \) to obtain \(n\sqrt{2} = m \).

Also without changing the equality of the equation, we can square both sides to obtain \(2n^2 = m^2 \). Because \(m^2 \) is 2 times the integer \(n \), we know that \(m^2 \) is even. Therefore, \(m \) is also even, because the square of an odd number is always odd. So, we can write \(m = 2k \) for some integer \(k \). Then, substituting \(2k \) for \(m \), we get \(2n^2 = (2k)^2 = 4k^2 \).

Dividing both sides by 2, we obtain \(n^2 = 2k^2 \). This result shows that \(n^2 \) is even, and hence that \(n \) is even. But we had earlier reduced \(m \) and \(n \) so that they were not both even, yielding a contradiction. \(\blacksquare \)
3. Proof by Induction

- **Used for:** A conjecture states that a particular statement is true for all members of a set.

- **Proof goal:** Demonstrate that the proof is true for one member, and that it also holds for the next member.

 - Show that it’s true for \(k = 1 \). (*basis*)

 - Show that, if it’s true for \(k \), then it’s true for \(k+1 \). (*induction*)
3. Proof by Induction

• Prove the following:

If a and b are consecutive integers, then the sum $a+b$ is odd.

Proof: Define the function $F(x)$ to be true when the sum of x and its successor is odd.

Basis: Consider the proposition $F(1)$. The sum $1+2 = 3$ is odd because we can demonstrate that 3 is an odd number: $3 = 2(1) + 1$. Thus, $F(x)$ is true when $x = 1$.

Induction: Assume that $F(x)$ is true for some x. Thus, for some x, we have that $x+(x+1)$ is odd. We add one to both x and $x+1$, which gives the sum $(x+1) + ((x+1)+1) = (x+1)+(x+2)$.
3. Proof by Induction

We claim two things. First, we claim that the sum \((x+1)+(x+2) = F(x+1)\).

Second, we claim that adding two to any integer does not change that integer’s evenness or oddness. With these two observations, we claim that \(F(x)\) is odd implies \(F(x+1)\) is odd.

By the principle of mathematical induction, we thus claim that \(F(x)\) is odd for all integers \(x\). Thus, the sum of any two consecutive numbers is odd. ■
Any Questions?

HOMEWORK (due 9/2)

2nd edition: 0.10, 0.11
3rd edition: 0.10, 0.12

Prove: The sum of any two even integers is also even.

Prove: \(1+2+3+\ldots+n = \frac{n(n+1)}{2}\). (HINT: use induction)

Prove: If \(a,b \in \mathbb{Z}\), then \(a^2 - 4b \neq 2\). (HINT: use contradiction)