CMPSC230
Lesson 3: Finite State Machines

Prof. John Wenskovitch
09/02/2014
Last Time

• Proofs
 – Terminology
 – Strategies
 – Proof by Construction
 – Proof by Contradiction
 – Proof by Induction
State

• “A unique configuration of information in a program or machine.”
• “A snapshot of the measure of various conditions in a system.”
• “All of the stored information at a given instant in time to which a circuit or program has access.”
• “The mode of operation of a computer during the execution of an instruction.”
Toy Example: Traffic Light

• How can we model a traffic light’s states?
• Now let’s add a left-turn arrow.
• How about two directions?
• How about a four-way intersection?

(gets complicated fast, right?)
Finite Automaton

• A finite automaton is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where:

 – \(Q\) is a finite set called the **states**

 – \(\Sigma\) is a finite set called the **alphabet**

 – \(\delta: Q \times \Sigma \rightarrow Q\) is the **transition function**

 – \(q_0 \in Q\) is the **start state**

 – \(F \subseteq Q\) is the set of **accept states**
Example 1

Graph: A finite state machine with states q_1, q_2, and q_3. The transitions are:
- q_1 to q_2 on 0
- q_2 to q_1 on 1
- q_2 to q_3 on 1
- q_3 to q_2 on 0,1
- q_3 to q_3 on 1,0
Example 1

- states: \(Q = \{q_1, q_2, q_3\} \)
- alphabet: \(\Sigma = \{0, 1\} \)
- transition function: \(\delta: Q \times \Sigma \rightarrow Q \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_3)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_2)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>

- start state: \(q_1 \)
- accept states: \(F = \{q_2\} \)
- all together: \(M = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_2\}) \)
Example 2

\[q_1 \xrightarrow{0} q_2 \quad q_2 \xrightarrow{0} q_1 \]

\[q_2 \xrightarrow{1} q_1 \quad q_1 \xrightarrow{1} q_2 \]
Example 2

– states: \(Q = \{q_1, q_2\} \)

– alphabet: \(\Sigma = \{0, 1\} \)

– transition function: \(\delta: Q \times \Sigma \rightarrow Q \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
</tbody>
</table>

– start state: \(q_1 \)

– accept states: \(F = \{q_2\} \)

– all together: \(M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\}) \)
What Strings Will M_2 Accept?

<table>
<thead>
<tr>
<th>Accepts 1</th>
<th>Rejects 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepts 11</td>
<td>Rejects 00</td>
</tr>
<tr>
<td>Accepts 01</td>
<td>Rejects 10</td>
</tr>
<tr>
<td>Accepts 1101</td>
<td>Rejects 0010</td>
</tr>
<tr>
<td>Accepts 1001001101</td>
<td>Rejects 0110110010</td>
</tr>
</tbody>
</table>

All end with 1

- Accepts 1
- Accepts 11
- Accepts 01
- Accepts 1101
- Accepts 1001001101
What Strings Will M_2 Accept?

- M_2 accepts every string that ends with a 1.
- $L(M_2) = \{w | w \text{ ends in a 1}\}$
- $L(M) = A$

Read as “w such that w ends in a 1”

Read as “the language of machine M is A” or “M recognizes A” or “M accepts A”
Example 3

Finite State Machines
Example 3

- states: $Q = \{s, q_1, q_2, r_1, r_2\}$
- alphabet: $\Sigma = \{a, b\}$
- transition function: $\delta: Q \times \Sigma \rightarrow Q$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>q_1</td>
<td>r_1</td>
</tr>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>r_1</td>
<td>r_2</td>
<td>r_1</td>
</tr>
<tr>
<td>r_2</td>
<td>r_2</td>
<td>r_1</td>
</tr>
</tbody>
</table>

- start state: s
- accept states: $F = \{q_1, r_1\}$
What Strings Will M_3 Accept?

- Accepts a
- Accepts b
- Accepts $ababa$
- Accepts $babab$
- Accepts $bbabaabbab$

- Rejects ab
- Rejects ba
- Rejects $ababab$
- Rejects $bababa$
- Rejects $bbabaabba$

Same letter begin and end

Different letter
What Strings Will M_3 Accept?

- M_3 accepts every string that begins and ends with the same letter
- $L(M_3) = \{w \mid w \text{ begins and ends with the same letter}\}$

Language function of M_3 Language of M_3 Read as “w such that w begins and ends with the same letter”
Example 4

• Design a machine that will accept only strings that contain an odd number of 1s. ($\Sigma = \{0, 1\}$)
 – The empty string has an even number of 1s, so don’t start in an accept state.
 – Every time we read a 0, our decision to accept is \textbf{NOT} affected.
 – Every time we read a 1, our decision to accept \textbf{IS} affected.
Example 4

- Design a machine that will accept only strings that contain an odd number of 1s. \(\Sigma = \{0, 1\} \)
Example 4

- Design a machine that will accept only strings that contain an odd number of 1s. ($\Sigma = \{0, 1\}$)
 - states: $Q = \{q_{even}, q_{odd}\}$
 - alphabet: $\Sigma = \{0, 1\}$
 - transition function: $\delta: Q \times \Sigma \rightarrow Q$

	0	1
q_{even}	q_{even}	q_{odd}
q_{odd}	q_{odd}	q_{even}
 - start state: q_{even}
 - accept states: $F = \{q_{odd}\}$
Any Questions?

HOMEWORK (due 9/9)
1.1, 1.2, 1.3, 1.4acef, 1.6ab

Note: DFA = “Deterministic Finite Automata”...
it’s a finite state machine