Last Time

• States
• Finite State Machines (DFAs)
 – states, alphabet, transition function, start state, accept state(s)
• Language Function
One More Example
One More Example

- states: \(Q = \{ q_1, q_2 \} \)
- alphabet: \(\Sigma = \{ 0, 1 \} \)
- transition function: \(\delta: Q \times \Sigma \rightarrow Q \)

\[
\begin{array}{c|cc}
& 0 & 1 \\
q_1 & q_1 & q_2 \\
q_2 & q_1 & q_2 \\
\end{array}
\]

- start state: \(q_1 \)
- accept states: \(F = \{ q_1 \} \)
What Strings Will This Accept?

- Accepts ε
- Rejected 1
- Rejected 00
- Rejected 000

$L(M) = \{w \mid w \text{ ends in a } 0 \text{ or is the empty string}\}$
What is this \(w \)?

- **Formal Definition of Computation:**
 - Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a finite state machine, and let \(w = w_1 w_2 \ldots w_n \) be a string where each \(w_i \) is a member of the alphabet \(\Sigma \).
 - \(M \) accepts \(w \) if a sequence of states \(r_1, r_2, \ldots, r_n \) in \(Q \) exists with the following three conditions:
 1. \(r_0 = q_0 \)
 2. \(\delta(r_i, w_{i+1}) = r_{i+1} \) for \(i = 0, \ldots, n-1 \)
 3. \(r_n \in F \)

IMPORTANT NOTE:
We don’t know all of \(w \). We only know the next character.
Regular Languages

• A regular language is any language that is recognizable by a finite state machine.
 – (If we can build a DFA for it, it’s a regular language.)

• M recognizes language A if $A = \{ w \mid M \text{ accepts } w \}$.
Operations on Regular Languages

• Let A and B be regular languages. We define the following allowable operations:

 Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

 Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$

 Star: $A^* = \{x_1x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A\}$
Toy Example

• Let the alphabet Σ be the standard 26 letters \{a, b, ..., z\}. If $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$, then:

 – **Union**: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 • $A \cup B = \{\text{good, bad, boy, girl}\}$

 – **Concatenation**: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
 • $A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$

 – **Star**: $A^* = \{x_1x_2 \ldots x_k \mid k \geq 0 \text{ and each } x_i \in A\}$
 • $A^* = \{\varepsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadbad, ...}\}$
More Terminology

• **Unary Operation**: An operation that applies to only a single language. (e.g. star)

• **Binary Operation**: An operation that applies to two different languages. (e.g. union, concatenation)

• **Closed**: An operation is called “closed” if applying that operation to members of a set returns an object still in that set.
Are Regular Languages Closed Under the Union Operation?

• **Proof Idea:**
 – Take two regular languages; call them A_1 and A_2
 – Because A_1 and A_2 are regular, there exist machines that recognize them (M_1 and M_2)
 – Let’s try to create a new machine M that simulates input w on M_1 and M_2
 – M should accept if either M_1 and M_2 accepts
Are Regular Languages Closed Under the Union Operation?

– **Problem:** We can’t “rewind” – once we read \(w \) on \(M_1 \), we can’t see it again for \(M_2 \)

– **Solution:** Keep track of both \(M_1 \) and \(M_2 \) simultaneously by remembering both states

 • If \(M_1 \) has \(k_1 \) states and \(M_2 \) has \(k_2 \) states, then \(M \) needs \(k_1 \times k_2 \) states!
Are Regular Languages Closed Under the Union Operation?

Proof: Let M_1 recognize A_1, where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, and let M_2 recognize A_2, where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct M to recognize $A_1 \cup A_2$, where $M = (Q, \Sigma, \delta, q_0, F)$:

1. $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$
2. Σ is the same as in M_1 and M_2
3. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let
 $$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$
4. q_0 is the pair (q_1, q_2)
5. $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$. ■

What kind of proof was this? **Proof by Construction**
What about the Concatenation and Star Operations?

• We’ll get back to those later...
Any Questions?

HOMEWORK (due 9/9)

1.6dghim

Note: 1.6m asks for the empty set, not the empty string