Last Time

- Review of DFAs
- Regular Languages
- Regular Language Operations
- Proof of Regular Languages Closure Under Union
Nondeterminism

• Deterministic Finite Automata:
 – Given that we’re in state r_i and that the next input character is w_{i+1}, we know what state to move to.
 – We can trace the flow of a computation across the full input w.

• Nondeterministic Finite Automata:
 – State r_i and character w_{i+1} could lead to two or more different states, or maybe to no states at all!
 – We could switch between state r_i and state r_{i+1} without reading anything at all!
As the Book Explains...
Why the Heck Would You Want to Do That?!?!?

• Remember our closure under union proof?
• Wouldn’t this be easier?

“I’m just gonna guess... and my guess will always be right!”
Example 1
Example 1

- states: \(Q = \{q_1, q_2, q_3, q_4\} \)
- alphabet: \(\Sigma = \{0, 1\} \)
- transition function: \(\delta: Q \times \Sigma \epsilon \rightarrow \mathcal{P}(Q) \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>(\epsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td>{q_1}</td>
<td>{q_1, q_2}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>(q_2)</td>
<td>{q_3}</td>
<td>\emptyset</td>
<td>{q_3}</td>
</tr>
<tr>
<td>(q_3)</td>
<td>\emptyset</td>
<td>{q_4}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>(q_4)</td>
<td>{q_4}</td>
<td>{q_4}</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

- start state: \(q_1 \)
- accept states: \(F = \{q_4\} \)
What Strings Will M_1 Accept?

- Accepts 11
- Accepts 101
- Accepts 1101
- Accepts 1010101
- Accepts 100101001
- Rejects 0
- Rejects 1
- Rejects 00
- Rejects 0010
- Rejects 1001001001

Contains substring 11 or 101

Doesn’t
Example 2
Example 2

– states: \(Q = \{q_0, q_1, q_2, q_3, q_4, q_5\} \)
– alphabet: \(\Sigma = \{0\} \)
– transition function: \(\delta: Q \times \Sigma \epsilon \rightarrow \mathcal{P}(Q) \)
– start state: \(q_0 \)
– accept states: \(F = \{q_1, q_3\} \)
What Strings Will M_2 Accept?

Strings of length 2n or 3n

- Accepts ϵ
- Accepts 00
- Accepts 000
- Accepts 0000
- Accepts 00000

Other length strings

- Rejects 0
- Rejects 00000
- Rejects 000000
- Rejects 0000000
- Rejects 00000000

Strings of length 2n or 3n

- Accepts ϵ
- Accepts 00
- Accepts 000
- Accepts 0000
- Accepts 000000
Every NFA has an equivalent DFA!

• **Equivalence**: Two machines are equivalent if they recognize the same language.

• **Proof Idea**:
 – Convert the NFA into a DFA that simulates it.
 – Each DFA state represents a subset of the possible states that the NFA could be in.
 – If the NFA has \(k \) states, the DFA will have \(2^k \) states.
In Action...

1. Determine the DFA’s states (there will be $2^3 = 8$).

2. Determine the start and accept states of the DFA.
 - Start – state which contains the NFA start state, plus any states reachable through epsilon arrows.
 - Accept – states which contain the NFA accept state.

3. Determine the DFA’s transition function.
 - Map the arrows from the NFA by thinking it through.

4. Simplify the machine by removing useless states.
In Action...

\[
\begin{align*}
\{1, 3\} & \xrightarrow{a} \{3\} & \{3\} & \xrightarrow{b} \emptyset \\
\{2\} & \xrightarrow{b} \{2, 3\} & \{2, 3\} & \xrightarrow{a} \{1, 2, 3\} \\
\{1, 3\} & \xrightarrow{b} \emptyset & \emptyset & \xrightarrow{a,b} \{1, 2, 3\}
\end{align*}
\]
So What About Those Operations on Regular Languages?
So What About Those Operations on Regular Languages?

Proof: Let N_1 recognize A_1, where $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, and let N_2 recognize A_2, where $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct N to recognize $A_1 \cup A_2$, where $N = (Q, \Sigma, \delta, q_0, F)$:

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$
2. Σ is the same as in N_1 and N_2
3. For any $q \in Q$ and any $a \in \Sigma_\varepsilon$, $\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$
4. q_0 is the new start state added.
5. $F = F_1 \cup F_2$. ■
So What About Those Operations on Regular Languages?
So What About Those Operations on Regular Languages?

Proof: Let N_1 recognize A_1, where $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, and let N_2 recognize A_2, where $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct N to recognize $A_1 \circ A_2$, where $N = (Q, \Sigma, \delta, q_0, F)$:

1. $Q = Q_1 \cup Q_2$
2. Σ is the same as in N_1 and N_2
3. For any $q \in Q$ and any $a \in \Sigma_\varepsilon$, $\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_2(q, a) \cup \{q_2\} & q \in Q_2 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$
4. q_0 is the start state of N_1.
5. $F = F_2$. ■
So What About Those Operations on Regular Languages?
So What About Those Operations on Regular Languages?

Proof: Let N_1 recognize A_1, where $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$.

Construct N to recognize A_1^*, where $N = (Q, \Sigma, \delta, q_0, F)$:

1. $Q = \{q_0\} \cup Q_1$
2. Σ is the same as in N_1
3. For any $q \in Q$ and any $a \in \Sigma$, $\delta(q, a) = \begin{cases}
\delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\
\delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a \neq \epsilon \\
\{q_1\} & q = q_0 \text{ and } a = \epsilon \\
\emptyset & q = q_0 \text{ and } a \neq \epsilon
\end{cases}$
4. q_0 is the new start state added.
5. $F = \{q_0\} \cup F_1$. ■
Any Questions?

HOMEWORK (due 9/16)
1.7abcd, 1.8a, 1.9a, 1.10a, 1.15
Image Credits

- Slide 3: Computer thrown out window (http://www.examiner.com/images/blog/EXID20872/images/computer-thrown-out-a-window%281%29.JPG)
- Slide 4: NFA explanation images (Sipser textbook, 2nd edition)
- Slides 16, 18, 20: Operations on regular expression images (Sipser textbook, 2nd edition)