Lesson 7: Non-Regular Languages

Prof. John Wenskovitch
09/23/2014
Last Time

• Well, there was an exam, but before that...

• Regular expressions
• Converting RegEx into NFA
• Converting DFA into RegEx
Can we recognize every possible language with finite state machines?

• Well, no...

• Consider the language $B = \{0^n1^n \mid n \geq 0\}$
 – Try to draw this machine...

• We can draw a machine for 01, and 0011, and 000111, but there’s no bound on the number of 0s and 1s, so we’d need a machine with an infinite number of states.
The **Pumping Lemma**

- If A is a regular language, then there is a number p (pumping length) where, if s is any string in A of length at least p, then s may be divided into 3 pieces, $s = xyz$, satisfying the following conditions:
 1. for each $i \geq 0$, $xy^iz \in A$
 2. $|y| > 0$, and x or z can be ε, but y cannot
 3. $|xy| \leq p$
Proof

• Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that recognizes language A.

• We assign the pumping length p to be the number of states in M.

 – If there are no strings of length p, then the theorem is “vacuously true,” so let’s only worry about strings p or longer.

 – Consider the sequence of states that M goes through when computing string w: there must be at least $|w|+1$ states that it has passed through. Therefore, there must be a repeated state.
To prove this, we need another tool...

• The **Pigeonhole Principle**
 – If \(p \) pigeons are placed into fewer than \(p \) holes, some hole **has** to have more than one pigeon in it.

• Now, let’s divide string \(s \) into three parts, \(xyz \), so that \(x \) is the part appearing before the repeated state, \(y \) is the part between the two appearances of the repeated state, and \(z \) is the part after the second occurrence of the repeated state.
This is all a fancy way of saying:
Why does this work?

- Suppose we run M on input $xyyz$:
 1. If the machine accepted xyz, it will accept $xyyz$.
 2. y is at least three states in size.
 3. By the Pigeonhole Principle, the first $p+1$ states must contain a repetition, so $|xy| \leq p$.
How does the Pumping Lemma work in a proof then?

• Let B be the language $\{0^n1^n \mid n \geq 0\}$. We can use the Pumping Lemma to prove that B is not a regular language:

 – Assume to reach a contradiction that B is regular. This means that a string in B can be broken down into parts xyz that match the definitions in the pumping lemma so that, for any $i \geq 0$, $xy^iz \in B$.

 – Choose s to be the string 0^p1^p. We will consider three cases to show that this is impossible.
How does the Pumping Lemma work in a proof then?

1. If the component string y consists of only 0s, then the string $x y y z$ has more 0s than 1s and so is not a member of B, violating condition 1 of the Pumping Lemma.

2. If the component string y consists of only 1s, then we will have the same problem as in part 1.

3. If the string y consists of both 0s and 1s, then the string $x y y z$ will have 0s and 1s out of order, hence it is not a member of B, which is a contradiction. ■
How about another example then?

• \(C = \{ w \mid w \text{ has an equal number of } 0\text{s and } 1\text{s}\} \).
 – Assume to reach a contradiction that \(C \) is regular. Let \(p \) be the pumping length given by the Pumping Lemma. Again, let \(s \) be the string \(0^p 1^p \).
 – We can break it down so that \(x,z=\varepsilon \) and \(y=0^p 1^p \).
 – Now our old arguments don’t work because the 0s and 1s can be in any order. This is where part 3 of the Pumping Lemma definition comes in handy.
 – Since \(|y|=2p \), \(|xy| \leq p \), so we have reached a contradiction. ■
Let’s look at one more

- \(F = \{ww \mid w \in \{0,1\}^*\} \)
 - Assume to reach a contradiction that \(F \) is regular. Let \(p \) be the pumping length given by the Pumping Lemma.
 - Let \(s \) be the string \(0^p 10^p 1 \). Because \(s \) is a member of \(F \) and \(s \) has length more than \(p \), the pumping lemma guarantees that \(s \) can be split into three pieces, \(s=xyz \), satisfying the three conditions of the lemma. The outcome is impossible because of the same condition 3 argument. ■
So what do we need to do in these proofs?

• Pick an s that:
 – Is in language A,
 – Guaranteed to be longer than p,
 – Cannot be pumped.

• (If you pick an example that can be pumped, you’ll need to try a different s...)

09/23/2014
Non-Regular Languages
Any Questions?

HOMEWORK (due 9/30)
1.29, 1.30, 1.36, 1.37