Last Time

• Exam

• Before that: Turing Machines!
 – A deterministic Pushdown Automaton where we can access anything on the stack – unlimited and unrestricted memory
 – If a problem is solvable, a Turing machine can solve it!
 – Operations: read/write to tape, move head left/right
Today

- Turing Machine Variants
 - Stay-Put Turing Machine
 - Multitape Turing Machine
 - Nondeterministic Turing Machine
 - Enumerator

- Why do we need variants?
 - Easier to represent some problems
 - Show they’re equivalent to regular TMs by proving that one can simulate the other
Stay-Put Turing Machine

• Instead of the transition function being \(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \), we will update it to \(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\} \).

• Is this machine equivalent to a regular Turing machine?
 – Yes: start with a vanilla Turing machine, and following every action, move in the opposite direction on any input.
Multitape Turing Machine

• It’s a Turing machine with more than one tape...
 – Each tape has its own read/write head
 – Input appears on tape 1; other tapes start out blank
 – New transition function:
 • \(\delta: Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\} \), \(k \) is the number of tapes
 • \(\delta: (q_i, a_1, ..., a_k) = (q_j, b_1, ... b_k, L, ..., R) \)
Multitape Turing Machine

• Is this machine equivalent to a regular TM?
 – **Proof Idea:** Show how to simulate multitape machine M with single-tape machine S.
 • S needs to simulate k tapes on a single tape.
 – Pick a new symbol (say, ‘#’) to delimit the different tapes.
 – Pick a new symbol (say, ‘∙’) to mark the location of each head.
Multitape Turing Machine

• **Proof:** $S = \text{“On input } w = w_1 w_2 \ldots w_n, \text{ do:”}~$

1. First, S puts its tape into the format that represents all k tapes of M. The formatted tape contains:

2. To simulate a single move, S scans its tape from the left to right to determine the symbols under the virtual heads. Then, S makes a second pass to update the tapes according to the way that M's transition function dictates.

3. If at any point S moves on of the virtual heads to the right onto a $\#$, S writes a blank symbol on this tape cell, and shifts all tape contents to the right of that blank one unit to the right, then continues the simulation.”
Nondeterministic Turing Machine

• It’s a Turing machine that has multiple computational paths...
 – The computation is a tree whose branches correspond to different possibilities for the machine.
 – If some branch of the computation leads to the accept state, the machine accepts its input.
 – New transition function:
 • $\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$
Nondeterministic Turing Machine

• Is this machine equivalent to a regular TM?
 – **Proof idea:** Show how a deterministic TM D can simulate all possible branches of nondeterministic TM N’s computation.
 • Root of the computational tree is the start configuration.
 • Each node of the tree is a configuration along some path of the computation.
 • D shouldn’t do a DFS in case of an infinite computation, so let D explore the tree using BFS.
 • D will visit every node in the tree until it encounters an accepting configuration.
Nondeterministic Turing Machine

- Use three tapes: input tape, simulation tape, address tape
Proof: \(D = \text{"On input } w = w_1w_2 \ldots w_n, \text{ do:"} \)

1. Initially, tape 1 contains the input \(w \), and tapes 2 \& 3 are empty.
2. Copy tape 1 to tape 2 and initialize the string to tape 3 to be \(\varepsilon \).
3. Use tape 2 to simulate \(N \) with input \(w \) on one branch of its nondeterministic computation. Before each step of \(N \), consult the next symbol on tape 3 to determine which choice to make among those allowed by \(N \)'s transition function. If no more symbols remain on tape 3, or if this ND choice is invalid, abort to step 4. Also, goto step 4 if a rejecting configuration is found. If an accepting configuration is found, accept.
4. Replace the string on tape 3 with the next string in the string ordering. Simulate the next branch of \(N \)'s computation by going to step 2."
 Enumerator

• It’s a Turing machine with a printer attached...
 – The TM can use that printer as an output device to print strings. Every time the TM wants to add a string to the list, it sends the string to the printer.
 – Basically, an enumerator can print all strings in a language.
Enumerator

• **Theorem:** A language is Turing-recognizable iff some enumerator enumerates it.

• **Proof:** First, we show that if we have an enumerator E that enumerates a language A, a TM M recognizes A. The TM M works like:

 $M = \text{“On input } w:\$
 1. Run E. Every time that E outputs a string, compare it with w.
 2. If w ever appears in the output of E, accept.”

• Next, we show the other direction: if a TM M recognizes a language A, we can construct an enumerator for A:

 $E = \text{“Ignore all input.}$
 1. Repeat the following for $i = 1, 2, 3, \ldots$
 2. Run M for i steps on each input s_1, s_2, \ldots, s_n
 3. If any computations accept, print out the corresponding s_j.\hfill ■
A Programming Languages Analogue

• Languages like Perl and BASIC look completely different from each other.
• Is there an algorithm that you can write in Perl that you cannot write in BASIC?
Any Questions?

HOMEWORK (due 10/30)
3.9, 3.13, 3.15abc, 3.16abc