CMPSC230
Lesson 13: Undecidability

Prof. John Wenskovitch
10/23/2014
Last Time

• Decidable Languages:
 – What is a decidable language?
 – What are some examples?
 • Acceptance problem for DFAs, NFAs, RegEx, CFGs
 • Emptiness problem for DFAs, NFAs, RegEx, CFGs
 • Equality problem for DFAs, NFAs, RegEx
Today

• Unsolvable Problems
 – They exist!
 – The starter example
 – Non-Turing recognizable languages
 – The Halting Problem
Acceptance Problem for Turing Machines

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \]

• We can definitely build a recognizer:
• Proof:

\[U = \text{“On input } \langle M, w \rangle \text{, where } M \text{ is a TM and } w \text{ is a string:} \]
 1. Simulate \(M \) on \(w \).
 2. If \(M \) ever enters its accept state, accept; if \(M \) ever enters its reject state, reject.” ■

• Is it possible to build a decider?
Acceptance Problem for Turing Machines

• **Theorem:** A_{TM} is undecidable.

• **Proof:**

 – Assume to reach a contradiction that Turing Machine H is a decider for A_{TM}. On input $\langle M, w \rangle$, where M is a TM and w is a string, H halts and **accepts** if M accepts w. Furthermore, H halts and **rejects** if M rejects w.

 $$H(\langle M, w \rangle) = \begin{cases}
 \text{accept} & \text{if } M \text{ accepts } w \\
 \text{reject} & \text{if } M \text{ doesn't accept } w
 \end{cases}$$
Acceptance Problem for Turing Machines

• Construct a new TM D with H as a subroutine.

 – D will call H and do the opposite (reject if H accepts, accept if H rejects).

 – $D = \text{“On input } \langle M \rangle, \text{ where } M \text{ is a TM:}
 \begin{enumerate}
 \item Run H on input $\langle M, \langle M \rangle \rangle$ and do opposite.”
 \end{enumerate}

 – Running a machine on its own description ($\langle M, \langle M \rangle \rangle$) is basically the same idea as running a program with itself as input.
Acceptance Problem for Turing Machines

\[D(\langle M \rangle) = \begin{cases}
 \text{accept} & \text{if } M \text{ doesn't accept } \langle M \rangle \\
 \text{reject} & \text{if } M \text{ accepts } \langle M \rangle
\end{cases} \]

• OK, so what happens if we run D on its own description?

\[D(\langle D \rangle) = \begin{cases}
 \text{accept} & \text{if } D \text{ doesn't accept } \langle D \rangle \\
 \text{reject} & \text{if } D \text{ accepts } \langle D \rangle
\end{cases} \]

• No matter what \(D \) does, it is forced to do the opposite, which is a contradiction. Thus, neither TM \(D \) nor TM \(H \) can exist. ■
A Quick Step-Through

• Assume that a TM H decides A_{TM}.

• Use H to build a TM D that takes an input $\langle M \rangle$.
 – D accepts its input $\langle M \rangle$ when M does not accept its input $\langle M \rangle$.
 – D rejects its input $\langle M \rangle$ when M accepts its input $\langle M \rangle$.

• Finally, run D on itself:
 – H accepts $\langle M, w \rangle$ exactly when M accepts w.
 – D rejects $\langle M \rangle$ exactly when M accepts $\langle M \rangle$.
 – D rejects $\langle D \rangle$ exactly when D accepts $\langle D \rangle$.
Some languages are not Turing-recognizable

- **Proof:**
 - The set of all strings Σ^* is countable for any alphabet Σ:
 - We can list all strings in Σ^* by listing all strings of length 0, all strings of length 1, all strings of length 2, ...
 - The set of all Turing machines is countable, because each Turing machine M has an encoding into a string $\langle M \rangle$. If we eliminate all strings that don’t produce legal Turing machines, we are left with the set of all legal Turing machines (T).
Some languages are not Turing-recognizable

– The set of all infinite binary sequences is uncountable:
 • Let B be the set of all infinite binary sequences.
 • We can show that B is uncountable with a diagonalization argument.

– Let L be the set of all languages over alphabet Σ.

– L has a one-to-one correspondence with B:
 • Each language A in L has a unique sequence in B.
 • If B is uncountable, then L is also uncountable.
 • If the number of languages (L) is uncountable, but the number of Turing machines (T) is countable, then there are more possible languages than possible Turing machines. ■
\(A_{\overline{TM}} \) is not Turing Recognizable

- **Theorem:** A language is Turing Decidable iff it is Turing Recognizable and its complement is Turing Recognizable.

- **Proof (\(\rightarrow \)):**
 - If language \(A \) is decidable, then it is recognizable.
 - If a TM \(M \) can decide whether or not a string is in \(A \), then it can also decide whether or not a string is in \(\overline{A} \).
A_{TM} is not Turing Recognizable

• **Proof (←):**

 – If both A and \overline{A} are Turing-recognizable, let M_1 be the recognizer for A, and let M_2 be the recognizer for \overline{A}.

 – The following machine M is a decider for A:

 \[
 M = \text{"On input } w:\n \begin{align*}
 1. & \text{ Run both } M_1 \text{ and } M_2 \text{ on input } w \text{ in parallel.} \\
 2. & \text{ If } M_1 \text{ accepts, } \text{accept}; \text{ if } M_2 \text{ accepts, } \text{reject}.\n \end{align*}
 \]

 – Every string w is either in A or \overline{A}; therefore either M_1 or M_2 must accept w. M always halts, and hence is a decider. Therefore, A is decidable. ■
\(A_{TM} \) is not Turing Recognizable

• **Theorem:** \(A_{TM} \) is not Turing recognizable

• **Proof:**

 – We know that \(A_{TM} \) is Turing recognizable.

 – If \(A_{TM} \) were also Turing recognizable, then the previous proof says that \(A_{TM} \) would become Turing decidable.

 – We have a proof that \(A_{TM} \) is not decidable; therefore \(A_{TM} \) must not be Turing recognizable.
The Halting Problem

\[
\text{HALT}_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}\]

- **Theorem:** \(\text{HALT}_{TM}\) is undecidable.
- **Proof:**
 - Assume to reach a contradiction that we have a TM \(R\) that decides \(\text{HALT}_{TM}\).
 - We will use \(R\) to construct \(S\), a TM that decides \(A_{TM}\).

\(S = \) “On input \(\langle M, w \rangle \), an encoding of a TM \(M\) and a string \(w\):

1. Run TM \(R\) on input \(\langle M, w \rangle \)
2. If \(R\) rejects, reject.
3. If \(R\) accepts, simulate \(M\) on \(w\) until it halts.
4. If \(M\) has accepted, accept; if \(M\) has rejected, reject.

- If \(R\) decides \(\text{HALT}_{TM}\), then \(S\) decides \(A_{TM}\). Because \(A_{TM}\) is undecidable, \(\text{HALT}_{TM}\) must also be undecidable. \(\blacksquare\)
Any Questions?

HOMEWORK (due 10/30)
4.7, 4.8, 4.10, 4.13