CMPSC230
Lesson 14: Undecidable Problems
Prof. John Wenskovitch
10/30/2014
Last Time

• Undecidable Problems
 – They exist!
 – The starter example
 – Non-Turing recognizable languages
 – The Halting Problem
Today

• More Undecidable Problems!
 – The reduction process
 – Example problems
 – New machine: LBA (linear bounded automaton)
The Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

- **Theorem:** \(\text{HALT}_{TM} \) is undecidable.
- **Proof:**
 - Assume to reach a contradiction that we have a TM \(R \) that decides \(\text{HALT}_{TM} \).
 - We will use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).

\[S = \text{“On input } \langle M, w \rangle, \text{ an encoding of a TM } M \text{ and a string } w:} \]
\[1. \text{ Run TM } R \text{ on input } \langle M, w \rangle \]
\[2. \text{ If } R \text{ rejects, reject.} \]
\[3. \text{ If } R \text{ accepts, simulate } M \text{ on } w \text{ until it halts.} \]
\[4. \text{ If } M \text{ has accepted, accept; if } M \text{ has rejected, reject.} \]

- If \(R \) decides \(\text{HALT}_{TM} \), then \(S \) decides \(A_{TM} \). Because \(A_{TM} \) is undecidable, \(\text{HALT}_{TM} \) must also be undecidable. ■
Emptiness Problem for Turing Machines

\[E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

- **Theorem:** \(E_{TM} \) is undecidable.
- **Proof:**
 - Assume to reach a contradiction that we have a TM \(R \) that decides \(E_{TM} \).
 - We will use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).

\(S = \text{"On input } \langle M, w \rangle \text{, an encoding of a TM } M \text{ and a string } w:\)

1. Use the description of \(M \) and \(w \) to construct a new TM \(M_1 \), which will reject all strings but \(w \), and on input \(w \) will work as usual:

 - \(M_1 = \text{"On input } x:\)
 1. If \(x \neq w \), reject.
 2. If \(x = w \), run \(M \) on input \(w \) and accept if \(M \) does."

2. Run \(R \) on input \(\langle M_1 \rangle \) and do opposite.

- The only string that \(M_1 \) can possibly accept is \(w \). Therefore, its language will be nonempty iff it accepts \(w \).
- If \(R \) decides \(E_{TM} \), then \(S \) decides \(A_{TM} \). Because \(A_{TM} \) is undecidable, \(E_{TM} \) must also be undecidable. ■
Can we decide if a Turing machine has an equivalent DFA?

\[REGULAR_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \} \]

- **Theorem:** \(REGULAR_{TM} \) is undecidable.
- **Proof:**
 - Assume to reach a contradiction that we have a TM \(R \) that decides \(REGULAR_{TM} \).
 - We will use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).

\(S = \) “On input \(\langle M, w \rangle \), an encoding of a TM \(M \) and a string \(w \):
 1. Use the description of \(M \) and \(w \) to construct a new TM \(M_2 \):
 \(M_2 = \) “On input \(x \):
 1. If \(x \) has the form \(0^n1^n \), **accept**.
 2. If \(x \) doesn’t take this form, run \(M \) on input \(w \) and **accept** if \(M \) accepts \(w \).”
 2. Run \(R \) on input \(\langle M_2 \rangle \) and do same.

- \(M_2 \) will recognize the clearly non-regular language \(0^n1^n \) if \(M \) doesn’t accept \(w \), and recognizes the regular language \(\Sigma^* \) if \(M \) accepts \(w \).
- Note: \(M_2 \) is not constructed with the purpose of running it on some input; rather, it is constructed simply to feed its description into the decider for \(REGULAR_{TM} \).
- If \(R \) decides \(REGULAR_{TM} \), then \(S \) decides \(A_{TM} \). Because \(A_{TM} \) is undecidable, \(E_{TM} \) must also be undecidable. ■
Equivalence Problem for Turing Machines

\[EQ_{TM} = \{ (M_1, M_2) | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

- **Theorem:** \(EQ_{TM} \) is undecidable.
- **Proof:**
 - Assume to reach a contradiction that we have a TM \(R \) that decides \(EQ_{TM} \).
 - We will use \(R \) to construct \(S \), a TM that decides \(E_{TM} \).

\(S = \) “On input \(\langle M \rangle \), where \(M \) is a TM:
 1. Run \(R \) on input \(\langle M, M_1 \rangle \), where \(M_1 \) is a TM that rejects all inputs and do same.”

 - We know that \(L(M_1) \) is empty. Therefore, if we can decide that \(M \) and \(M_1 \) are equal, we can decide that \(M \) is empty.
 - If \(R \) decides \(EQ_{TM} \), then \(S \) decides \(E_{TM} \). Because \(E_{TM} \) is undecidable, \(EQ_{TM} \) must also be undecidable. ■
New Machine: LBA

• **Linear Bounded Automaton** – a restricted type of Turing machine, on which the tape head is not permitted to move off the portion of the tape containing the input.

 – If the machine tries to move its head off either end of the input, the head stays where it is, similar to the left end of an ordinary TM’s tape.

 – Despite the tape limitation, LBAs are still powerful:

 • The deciders for A_{DFA}, A_{CFG}, E_{DFA}, and E_{CFG} are all LBAs.

 • Every CFL can be decided by an LBA.
A_{LBA} is decidable!

- **Lemma:** Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qng^n distinct configurations of M for a tape of length n.

- **Proof:** Remember that a configuration of M is like a snapshot in the middle of a computation, consisting of the current state, the head position, and the contents of the tape. M has q states, the head can be in one of n positions, and g^n possible strings of tape symbols appear on the tape. The product of these three values is the total number of distinct configurations of M with a tape of length n.
A_{LBA} is decidable!

• **Theorem:** A_{LBA} is decidable.

• **Proof:**

 – We construct a machine L to decide A_{LBA}:

 $L = \text{"On input } \langle M, w \rangle, \text{ where } M \text{ is an LBA and } w \text{ is a string:} $

 1. Simulate M on w for qng^n steps, or until it halts.
 2. If M has halted, do same. If M has not halted, reject.”

 – If M on w has not halted within qng^n steps, it must be repeating configurations, and therefore looping. Therefore, our algorithm can reject. ■
Accepting Computation History

• Let M be a Turing machine and w an input string. An accepting computation history for M on w is a sequence of configurations, C_1, C_2, \ldots, C_l, where C_1 is the start configuration of M on w, C_l is an accepting configuration of M, and each C_i legally follows from C_{i-1} according to the rules of M.

• A rejecting computation history for M on w is defined similarly, except that C_l is a rejecting configuration.

• Computation histories are finite sequences – if M does not halt on w, then no accepting or rejecting computation history exists for M on w.
Emptiness Problem for LBAs

\[E_{LBA} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

- **Theorem:** \(E_{LBA} \) is undecidable.
- **Proof:**
 - Assume to reach a contradiction that we have a TM \(R \) that decides \(E_{LBA} \).
 - We will use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).

\(S = \) “On input \(\langle M, w \rangle \), where \(M \) is a TM and \(w \) is a string:
 1. Construct an LBA \(B \) and string \(x \) from \(M \) and \(w \) such that \(B \) accepts \(x \) iff \(x \) is an accepting computation history for \(M \) on \(w \). (Assume that the input \(x \) is provided as ‘#’-delimited configurations on the tape.)
 2. Run \(R \) on input \(\langle B \rangle \) and do opposite.”

- If \(R \) accepts \(B \), then \(L(B) = \emptyset \); therefore, \(M \) has no accepting computation history of \(w \), so \(M \) doesn’t accept \(w \).
- If \(R \) decides \(E_{LBA} \), then \(S \) decides \(A_{TM} \). Because \(A_{TM} \) is undecidable, \(E_{LBA} \) must also be undecidable. ■
Any Questions?

NO HOMEWORK