Last Time

• More Undecidable Problems!
 – The reduction process
 – Example problems
 – New machine: LBA (linear bounded automaton)
Today

• Mapping Reducibility
 – Formalized definition
 – Mapping reducibility
 – “We can solve A with a solver for B”
Computable Function

- A function $f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.
- Examples:
 - Arithmetic operations (a Turing machine that takes input $\langle m, n \rangle$ and returns $m+n$).
 - Transformations of machine descriptions.
Mapping Reducibility

• Language A is **mapping reducible** to language B (written $A \leq_m B$) if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w, $w \in A \leftrightarrow f(w) \in B$. The function f is called the **reduction** of A to B.
Mapping Reducibility

• **Question:** Is $w \in A$?

• **Answer:** We can find out by using function f to map w to $f(w)$, test whether or not $f(w) \in B$, and do same.
Decidability

• **Theorem:** If $A \leq_m B$ and B is decidable, then A is decidable.
• **Proof:** We let M be the decider for B and f be the reduction from A to B. We describe a decider N for A as follows:

 $N = \text{"On input } w:\n 1. \text{ Compute } f(w).\n 2. \text{ Run } M \text{ on input } f(w) \text{ and do same."}$

 If $w \in A$, then $f(w) \in B$ because f is a reduction from A to B. Thus, M accepts $f(w)$ whenever $w \in A$. Therefore, N works as desired. ■

• **Corollary:** If $A \leq_m B$ and A is undecidable, then B is also undecidable.
Application to the Halting Problem

- Can we demonstrate a mapping reducibility from A_{TM} to $HALT_{TM}$?
- First, we must present a computable function f that takes input of the form $\langle M, w \rangle$ and returns output of the form $\langle M', w' \rangle$, where $\langle M, w \rangle \in A_{TM}$ iff $\langle M', w' \rangle \in HALT_{TM}$.

- The following machine F computes a reduction f:

 $F =$ “On input $\langle M, w \rangle$:
 1. Construct the following machine M':
 $M' =$ “On input x:
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, enter an infinite loop.”
 2. Output $\langle M', w \rangle$.” ■
What else can we reduce?

- **Theorem:** If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.
- **Proof:** Same proof as for decidable, but with recognizers instead of deciders.

Can we create a mapping reduction from E_{TM} to EQ_{TM}?

- The reduction f maps the input $\langle M \rangle$ to the output $\langle M, M_1 \rangle$, where M_1 is the machine that rejects all inputs.

Can we create a mapping reduction from A_{TM} to E_{TM}?

- No! A reduction from A_{TM} to E_{TM} doesn’t exist. But, we can reduce A_{TM} to E_{TM}, by setting up reduction f so that M accepts w iff $L(M_1)$ is *not* empty.
The Recursion Theorem

- Consider cell replication:
The Recursion Theorem

Lemma: There is a computable function \(q : \Sigma^* \rightarrow \Sigma^* \), where if \(w \) is any string, \(q(w) \) is the description of the Turing machine \(P_w \) that prints out \(w \) and halts.

Proof: We construct a TM \(Q \) that computes \(q(w) \):

\[Q = \text{“On input string } w \text{:} \]

1. Construct the following TM \(P_w \):
 \[P_w = \text{“On any input:} \]
 1. Erase input.
 2. Write \(w \) on the tape.
 3. Halt.”

2. Output \(\langle P_w \rangle \).”
The Recursion Theorem

• So we have a machine that can write the description of another TM. Now we need a second TM that will write the output of the first:

SELF: “On any input:

1. First run A. It prints $\langle B \rangle$ on the tape.
2. Next run B. B looks at the tape and finds its input, $\langle B \rangle$.
3. B calculates $q(\langle B \rangle) = \langle A \rangle$ and combines that with $\langle B \rangle$ into a TM description $\langle SELF \rangle$.
4. B prints this $\langle SELF \rangle$ description and halts.
The Recursion Theorem

• **Recursion Theorem:** Let T be a Turing machine that computes a function $t : \Sigma^* \times \Sigma^* \to \Sigma^*$. There exists a Turing machine R that computes a function $r : \Sigma^* \to \Sigma^*$, where for every w, $r(w) = t(\langle R \rangle, w)$.

• In other words, to make a Turing machine that can obtain its own description and then compute with it, we need only make a machine, called T in the statement, that receives the description of the machine as an extra input.

• Then, the recursion theorem produces a new machine R which operates exactly as T does but with R’s description filled in automatically.
The Recursion Theorem

• OK, so TMs can get their own code. What does that mean?
• Well, computer viruses for one thing...
Minimal Machines

• OK, so TMs can get their own code. What does that mean?

\[MIN_{TM} = \{ \langle M \rangle \mid M \text{ is a minimal TM} \} \]

• If \(M \) is a Turing machine, then we say the length of the description of \(\langle M \rangle \) of \(M \) is the number of symbols in the string describing \(M \). \(M \) is minimal if there is no Turing machine equivalent to \(M \) that has a shorter description.
Minimal Machines

\[\text{MIN}_{TM} = \{ \langle M \rangle \mid M \text{ is a minimal TM} \} \]

- **Theorem:** \(\text{MIN}_{TM} \) is not Turing-recognizable.
- **Proof:**
 - Assume to reach a contradiction that we have a TM \(E \) that enumerates \(\text{MIN}_{TM} \).
 - We will use \(E \) to construct the following TM \(C \):

\[
C = \text{"On input } w: \text{"}
\begin{enumerate}
\item Obtain, via the recursion theorem, own description \(\langle C \rangle \).
\item Run the enumerator \(E \) until a machine \(D \) appears with a longer description than that of \(C \).
\item Simulate \(D \) on input \(w \).
\end{enumerate}
\]

- Because \(\text{MIN}_{TM} \) is infinite, \(E \)’s list must contain a TM with a longer description. Therefore, step 2 of \(C \) eventually terminates. Because \(C \) is shorter than \(D \) and is equivalent to it, \(D \) cannot be minimal, but \(D \) appears on the list that \(E \) produces. Thus, we have a contradiction. ■
Fixed Point

- A **fixed point** of a function is a value that isn’t changed by the application of the function.

- **Theorem:** For any transformation function, some Turing machine exists whose behavior is unchanged by the transformation.

- **Proof:** Let \(t : \Sigma^* \rightarrow \Sigma^* \) be a computable function. There is a Turing machine \(F \) for which \(t(\langle F \rangle) \) describes a machine equivalent to \(F \). In this theorem, \(t \) plays the role of the transformation, and \(F \) is the fixed point. We construct TM \(F \):

 \[
 F = \text{“On input } w:\text{ }
 \begin{align*}
 1. & \text{ Obtain, via the recursion theorem, own description } \langle F \rangle. \\
 2. & \text{ Compute } t(\langle F \rangle) \text{ to obtain the description of a TM } G. \\
 3. & \text{ Simulate } G \text{ on } w."
 \end{align*}
 \]

- Clearly, \(\langle F \rangle \) and \(t(\langle F \rangle) = \langle G \rangle \) describe equivalent Turing machines because \(F \) simulates \(G \).
Any Questions?

HOMEWORK (due 11/20)
5.7, 5.22, 5.23, 6.7