Administrative Slide

• Learning Commons Tutoring
 – Cody: Tuesday 6-8
 – Marlee: Wednesday 7-9
Last Time

• What can complicate our runtime analysis?
 – Large constants, non-dominant loops, instruction time, system considerations, too close to call, dependence on inputs, multiple problem parameters

• Memory
 – Integers, doubles, objects, arrays, Strings
 – Annoying differences between Java 7+ and 6-
Today

• Sort structure and “rules”
• Selection sort
• Insertion sort
• Comparing sorting methods
Why Does Sorting Matter?

• “About a quarter of all computer cycles are spent sorting.” – Donald Knuth, 1973
 – Bank account transactions
 – Search engine results
 – Scientific computations – astrophysics, molecular dynamics, weather prediction, linguistics

• Suitable “prototype problem” – easily modeled and has good mathematical properties.

• The first step towards organizing and evaluating data is often to sort it.
Sorting Goals

• Sort an array of items, where each item contains a **key**. *(what’s that?)*
• After sorting, each item in the array should be arranged so that its key is ordered by some well-defined ordering rule (usually numerical or alphabetical order).
• Access and manipulate the data through two functions: `less()` and `exch()`.
 – When analyzing these sorting algorithms, we will count the number of these calls separately.
• We will also look at memory usage by each algorithm:
 – Either **in-place** or require extra memory.
public class Example {
 public static void sort(Comparable[] a) {
 /* Sorting algorithms go here */ } //sort

 private static boolean less(Comparable v, Comparable w) {
 return (v.compareTo(w) < 0); } //less

 private static void exch(Comparable[] a, int i, int j) {
 Comparable t=a[i]; a[i]=a[j]; a[j]=t; } //exch

 private static void show(Comparable[] a) {
 /* Prints the current state */ } //show

 public static boolean isSorted(Comparable[] a) {
 /* Checks to see if a is sorted */ } //isSorted

 public static void main(String[] args) {
 /* Read input, sort, check if sorted, print */ } //main
} //Example (class)
Comparable Interface

• Implemented by all Java datatypes that can be sorted: Integer, Double, String, File, etc.
 – That means that the sort algorithms provided by the book can sort all of these datatypes!
 – That also means we can sort any class we create, just by implementing Comparable and adding a compareTo() method!
compareTo() Function

• v.compareTo(w) will
 – Return -1 if v<w
 – Return 0 if v=w
 – Return 1 if v>w

• Must implement a total order:
 – Reflexive – ∀v: v = v
 – Antisymmetric – ∀v, w: if v < w and v > w, then v = w
 – Transitive – ∀v, w, x: if v ≤ w and w ≤ x, then v ≤ x
Selection Sort

- Find the smallest item in the array; put it first.
- Find the next smallest item; put it second.
- Repeat until you’ve reached the last item in the input array.

```c
for (int i = 0; i < N; i++) {
    int min = i;
    for (int j = i+1; j < N; j++) {
        if (less(a[j], a[min])) {
            min = j;
        }
    }
    exch(a, i, min);
}
```
Selection Sort Visual

<table>
<thead>
<tr>
<th>i</th>
<th>min</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>A</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>S</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>A</td>
<td>E</td>
<td>R</td>
<td>T</td>
<td>O</td>
<td>X</td>
<td>S</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>T</td>
<td>O</td>
<td>X</td>
<td>S</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>O</td>
<td>X</td>
<td>S</td>
<td>M</td>
<td>P</td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>X</td>
<td>S</td>
<td>O</td>
<td>P</td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>S</td>
<td>X</td>
<td>P</td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>X</td>
<td>S</td>
<td>T</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
</tr>
</tbody>
</table>

entries in black are examined to find the minimum

entries in red are a[min]

entries in gray are in final position

Trace of selection sort (array contents just after each exchange)
Selection Sort Evaluation

• **less()** compares
 – When \(i = 1 \), we compare it against the other \((n - 1)\) entries.
 – When \(i = 2 \), we compare it against the remaining \((n - 2)\) entries.
 \[
 (n - 1) + (n - 2) + \cdots + 2 + 1 = \sim \frac{n^2}{2}
 \]

• **exch()** exchanges
 – For each \(i \) value, we do one exchange, swapping \(a[i] \) with \(a[min] \).
 \[
 1 + 1 + 1 + \cdots + 1 = n
 \]
Selection Sort Evaluation

Trace of selection sort (array contents just after each exchange)

Entries in black are examined to find the minimum.

Entries in gray are in final position.

Entries in red are a[width].
Selection Sort Evaluation

• Run time is insensitive to input.
 – Finding the smallest item on iteration i does not give any information about the location of the smallest item in iteration $(i + 1)$.
 – Therefore, worst case = average case.

• Data movement is minimal.
 – Number of exchanges is linear w.r.t. array size.
 – No other sorting algorithm that we will consider has this property.
Insertion Sort

• Look at the current $a[i]$.
• Place it appropriately between items $a[0]$ to $a[i-1]$, moving it left until it shouldn’t be moved further.
• Repeat until you’ve reached the last item in the input array.

```cpp
for (int i = 1; i < N; i++) {
    for (int j = i; j > 0 && less(a[j], a[j-1]); j--) {
        exch(a, j, j-1);
    }
}
```
Insertion Sort Visual

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>SORT</td>
<td>EX</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>OR</td>
<td>S</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>OR</td>
<td>S</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>OR</td>
<td>S</td>
<td>T</td>
<td>E</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>OR</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>OR</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td>A</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>A</td>
<td>E</td>
<td>O</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td>M</td>
<td>P</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>A</td>
<td>E</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>A</td>
<td>E</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>A</td>
<td>E</td>
<td>E</td>
<td>L</td>
<td>M</td>
<td>O</td>
<td>P</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>X</td>
</tr>
</tbody>
</table>

Trace of insertion sort (array contents just after each insertion)

- **Entries in gray do not move**
- **Entry in red is a[i]**
- **Entries in black moved one position right for insertion**
Insertion Sort Evaluation

- **less()** compares
 - When $i = 1$, we compare it against a maximum of 1 previous entry.
 - When $i = 2$, we compare it against a maximum of 2 previous entries.
 - On average, assume we’re moving the new value halfway to the left.

 \[
 [1 + 2 + \cdots + (n - 2) + (n - 1)]/2 = \sim \frac{n^2}{4} \text{ compares}
 \]

- **exch()** exchanges
 - Since **exch()** is called in a loop limited by **less()** calls, the count is identical, \(\sim \frac{n^2}{4} \) exchanges
Insertion Sort Evaluation

• Now we have a worst case and a best case to consider:
 – **Worst case:** We need to move every letter the whole way to the left.
 • \(1 + 2 + \cdots + (n - 2) + (n - 1) = \sim \frac{n^2}{2}\) compares and exchanges.
 – **Best case:** We don’t need to move any letters – the array is already sorted, or all of the keys are identical.
 • \(1 + 1 + 1 + \cdots + 1 = n - 1\) compares and 0 exchanges.
Insertion Sort Evaluation

Trace of insertion sort (array contents just after each insertion)

- Entries in gray do not move
- Entry in red is a[j]
- Entries in black moved one position right for insertion
Insertion Sort Evaluation

• Run time and data movement are both sensitive to input.
 – The initial positions of the items has a significant impact on the run time of the algorithm, as well as how far each data item needs to move.
 – Insertion Sort works quite efficiently on data that is already almost sorted and just needs a few tweaks:
 • A small array appended to a large sorted array.
 • An array that was sorted and had a few values update.
Partially Sorted Array

- **Inversion** – A pair of entries that are out of order in an array.
 - “If the number of inversions is less than a constant multiple of the array size, we call the array **partially sorted**.”
 - In practice, let’s say halfway between average case and best case is partially sorted.
Comparing Sorting Algorithms

• So which is faster, Insertion Sort or Selection Sort?
 – It depends...

• Compare algorithms by:
 1. Implementing and debugging them
 2. Analyzing their properties
 3. Hypothesizing about their performance
 4. Running experiments to validate the hypotheses
Comparing Sorting Algorithms

1. Implementing and Debugging
 – Done (algorithms)

2. Analyzing properties
 – Done (average/worst case analysis)

3. Hypotheses
 – //TODO

4. Experiments
 – //TODO
Comparing Sorting Algorithms

• **Hypothesis:** Since both Selection Sort and Insertion Sort run in $O(n^2)$ time, their performance is effectively the same, with variations of a constant factor, for randomly ordered arrays of distinct values.

• **Experiments:** Well, let’s find out...
Any Questions?