Last Time

• Online data acquisition and priority queues
• Heap implementations, \texttt{sink()} and \texttt{swim()}
• Heapsort and evaluation
Symbol Tables

- **Symbol Table** – A data structure for key-value pairs, associating a key with some value info.
 - `put(Key, Value)` – Insert a (key,value) pair into the data structure
 - `get(Key)` – Retrieve the value paired with the given key

- Dictionary (key = word, value = definition)
- Index (key = term, value = relevant page numbers)
- Web search (key = search term, value = results)
Symbol Table Rules

• No duplicate keys – each key will be associated with one and only one value (think of it like an array index only holding one item (associative array abstraction))
• No null keys – results in a runtime exception
• No null values – a key without a value should automatically get the value null; no key should specifically be assigned the value null
• Deletion – two styles:
 – Lazy deletion – wipe the value with null
 – Eager deletion – delete the (key,value) pair completely
Ordered Symbol Tables

• Keys can be Comparable objects, so they can be sorted. This lets us perform a number of operations on the symbol table:
 – Min/max – Smallest and largest keys
 – Floor/ceiling – largest key less than or smallest key greater than
 – Rank/selection – number of keys less than a given key, or find the key with a given rank
 – Check key equality
Ordered Symbol Tables

```java
public class ST<Key extends Comparable<Key>, Value>

    ST()                      // create an ordered symbol table

    void put(Key key, Value val) // put key-value pair into the table
                              // (remove key from table if value is null)

    Value get(Key key)         // value paired with key
                              // (null if key is absent)

    void delete(Key key)       // remove key (and its value) from table

    boolean contains(Key key)  // is there a value paired with key?

    boolean isEmpty()         // is the table empty?

    int size()                // number of key-value pairs

    Key min()                 // smallest key

    Key max()                 // largest key

    Key floor(Key key)        // largest key less than or equal to key

    Key ceiling(Key key)      // smallest key greater than or equal to key

    int rank(Key key)         // number of keys less than key

    Key select(int k)         // key of rank k

    void deleteMin()          // delete smallest key

    void deleteMax()          // delete largest key

    int size(Key lo, Key hi)  // number of keys in [lo..hi]

    Iterable<Key> keys(Key lo, Key hi) // keys in [lo..hi], in sorted order

    Iterable<Key> keys()     // all keys in the table, in sorted order
```
Sequential Search

```java
put(Key key, Value val) {
    for (Node x = first, x != null, x = x.next()) {
        if (key.equals(x.key())) {
            x.val = val;
            return;
        } //if
    } //for
    first = new Node(key, val, first);
} //put

get(Key key) {
    for (Node x = first, x != null; x = x.next()) {
        if (key.equals(x.key())) {
            return x.val;
        } //if
    } //for
} //get
```
Sequential Search Visual
Sequential Search Evaluation

- **Theorem:** A search miss and insertion in a sequential search through a symbol table with \(N \) key-value pairs requires \(N \) compares.

- **Proof:** When searching for a key, we need to test every key in the table against the search key. We must do this full search before each insertion because of our policy of disallowing duplicate keys.

- **Corollary 1:** A search hit (not requiring an insertion) requires \(\frac{N}{2} \) compares.

- **Corollary 2:** Inserting \(N \) distinct keys into an initially empty symbol table uses \(\sim \frac{N^2}{2} \) compares.
Sequential Search Evaluation
Sequential Search Evaluation

• Pros
 – Trivial to implement

• Cons
 – Too slow for very large problems
 • Total number of compares for Leipzig is $\sim 10^{14}$
 (roughly \#searches * \#inserts)
Binary Search

```java
int rank(Key key) {
    int lo = 0;
    int hi = N-1;
    while (lo <= hi) {
        int mid = lo + (hi - lo) / 2;
        int cmp = key.compareTo(keys[mid]);
        if (cmp < 0) {
            hi = mid - 1;
        } else if (cmp > 0) {
            lo = mid + 1;
        } else {
            return mid;
        } //if-else
    } //while
    return lo;
} //rank
```
Binary Search

```java
put(Key key, Value val) {
    int i = rank(key);
    if (i < N && keys[i].compareTo(key) == 0) {
        vals[i] = val;
        return;
    } //if
    for (int j = N; j > i; j--) {
        keys[j] = keys[j-1];
        vals[j] = vals[j-1];
    } //for
    keys[i] = key;
    vals[i] = val;
    N++;
} //put

get(Key key) {
    if (isEmpty()) return null;
    int i = rank(key);
    if (i < N && keys[i].compareTo(key) == 0) {
        return vals[i];
    } else {
        return null;
    } //if-else
} //get
```
Binary Search Visual

<table>
<thead>
<tr>
<th>keys[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

successful search for P

<table>
<thead>
<tr>
<th>lo</th>
<th>hi</th>
<th>mid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

- entries in black are `a[lo..hi]`
- entry in red is `a[mid]`

unsuccessful search for Q

<table>
<thead>
<tr>
<th>lo</th>
<th>hi</th>
<th>mid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

- loop exits with `keys[mid] = P`: return
- loop exits with `lo > hi`: return 7
Binary Search Analysis

- **Theorem:** Binary search in an ordered array with \(N \) keys uses no more than \(\log(N) + 1 \) compares for a search, successful or unsuccessful.

- **Proof:**
 - Let \(C(N) \) be the number of compares needed to search for a key in a symbol table of size \(N \).
 - We know \(C(0) = C(1) = 1 \).
 - \(C(N) \leq C(N/2) + 1 \).
 - \(C(2^n - 1) \leq C(2^{n-1} - 1) + 1 \).
 - \(C(2^n - 1) \leq C(2^{n-2} - 1) + 1 + 1 \).
 - \(C(2^n - 1) \leq C(2^0) + 1 + 1 + 1 + \cdots + 1 \).
 - \(C(2^n - 1) \leq 1 + n \).
 - \(C(N) \leq \log(n) + 1 \).
Binary Search Analysis

• **Theorem:** Inserting a new key into an ordered array of size N uses $\sim 2N$ array accesses in the worst case.

• **Proof:** If we have to insert something at the beginning of the array, we have to move N items one position to the right (one read, one write)

• **Corollary:** Inserting N keys into an initially empty table uses $\sim N^2$ arrays accesses in the worst case.
Binary Search Evaluation
Binary Search Evaluation

• **Pros**
 – Still fairly trivial to implement
 – Better than Sequential Search

• **Cons**
 – Too slow for very, very, very large problems
 • Total number of compares for Leipzig is $\sim 10^{11}$
 • Binary Search reduces the number of compares, but not necessarily the overall running time, because the `put()` method is slower.
Can We Do Better?

<table>
<thead>
<tr>
<th>Algorithm (data structure)</th>
<th>Worst-case cost (after N inserts)</th>
<th>Average-case cost (after N random inserts)</th>
<th>Efficiently support ordered operations?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential search (unordered linked list)</td>
<td>N</td>
<td>$N/2$</td>
<td>no</td>
</tr>
<tr>
<td>Binary search (ordered array)</td>
<td>$\lg N$</td>
<td>$\lg N$</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search</th>
<th>Insert</th>
<th>Search hit</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>N</td>
<td>$N/2$</td>
<td>N</td>
</tr>
<tr>
<td>Binary</td>
<td>$\lg N$</td>
<td>$\lg N$</td>
<td>N</td>
</tr>
</tbody>
</table>
Any Questions?