Last Time

• Strings
 – They’re important
 – We need to sort them (and search them)

• MSD String Sort

• Tries
Trie – Visual

- Characters are implicitly defined by link index.
- Each node has an array of links and a value.
Trie – Analysis

• **Theorem:** The number of links in a trie is between RN and RNw, where w is the average key length.

• **Proof:** Immediate from the code.
 – Every key in the trie has a node containing R links, so the number of links is at least RN.
 – If the first characters of all of the keys are different, then there is a node with R links for every key character, so the number of links is R times the total number of characters, or RNw.

• In other words, lots of wasted space.
de la Briandais Trie

• Old version: Node = value + R links
• New version: Node = value + 2 links
 – Link 1: reference to child node (move to next level)
 – Link 2: reference to sibling node (stay on same level)

• Notice that now we need to store the key as a character, rather than use them as indices.
de la Briandais Trie

bye, by, get, got, gets

Root

B

∅

Y,1
∅

E,0
∅

∅

E

∅

∅

∅

T,2
∅

T,3
∅

S,4
∅

∅
de la Briandais Trie - Analysis

• In the worst case, with an R-character alphabet and a string of length w, our search time is Rw, because we search through all R characters on level i before moving to level $i + 1$.

• In the average case, our search time is $\sim \log_R(w)$, since we won’t search through all of the characters before moving levels, and based on the level-sparsity rationale from the regular trie analysis.
 – For small N, search time is just $\sim w$.
Substring Search

• Problem overview:
 – Given a pattern and a text sequence, find the pattern in the text.
 – Return the location where the pattern starts, or length of the text if not found.
Brute Force Approach

```java
int search(String pat, String txt) {
    int M = pat.length();
    int N = txt.length();
    for (int i = 0; i <= N-M; i++) {
        int j;
        for (j = 0; j < M; j++) {
            if (txt.charAt(i+j) != pat.charAt(j)) {
                break;
            } //if
        } //for
        if (j == M) {
            return i;           // found
        } //if
    } //for
    return N;      // not found
} //search
```
Brute Force – Visual

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>i+j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>txt</td>
<td>→</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>R</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>A</td>
<td>B</td>
<td>R</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A</td>
<td>B</td>
<td>R</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Entries in red are mismatches

Return i when j is

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>i+j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>txt</td>
<td>→</td>
<td>A</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>4</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Brute Force – Analysis

• **Theorem:** Brute force substring search requires $\sim NM$ character compares to search for a pattern of length M in a text of length N, in the worst case.

• **Proof:** The worst case occurs when the pattern is checked for all characters and fails at the final character for all starting positions except the last one.

 – There are $N - M + 1$ possible match positions.
 – Each match position checks M characters.
 – Running time is $(M) \times (N - M + 1)$, which reduces to $\sim NM$ if M is very small compared to N.
Knuth-Morris-Pratt Substring Search

- Idea: Whenever we detect a mismatch, we already know some of the characters in the text. We can take advantage of this information to avoid backing up the text pointer over all of those known characters.
Knuth-Morris-Pratt Substring Search

• Rules:
 – Never back up the text pointer i
 – Use array $dfa[][]$ to record how far to back up the pattern pointer j when a mismatch is detected
 • For every character c, $dfa[c][j]$ is the pattern position to compare against the next text position after comparing c with $pat.charAt(j)$.
 • During the search, $dfa[txt.charAt(i)][j]$ is the pattern position to compare with $txt.charAt(i+1)$ after we compare $txt.charAt(i)$ with $pat.charAt(j)$.
int search(String txt) {
 int i, j;
 int N = txt.length();
 int M = pat.length();
 for (i=0, j=0; i<N && j<M; i++) {
 j = dfa[txt.charAt(i)][j];
 } //for
 if (j == M) {
 return i-M;
 } else {
 return N;
 } //if-else
} //search
KMP Substring Search – Visual

- Read this char → B C B A A B A C A A
- In this state → 0 0 0 0 1 1 2 3 0 1 1 2 3 4 5 6
- Go to this state → A B A B A C
- Match:
 - Set j to dfa[txt.charAt(i)][j]
 - = dfa[pat.charAt(j)][j]
 - = j+1
- Mismatch:
 - Set j to dfa[txt.charAt(i)][j]
 - Implies pattern shift to align
 - pat.charAt(j) with
 - txt.charAt(i+1)

Found return i - M = 9

03/14/2016

KMP Substring Search

Allegheny College
KMP Substring Search – DFA

internal representation

<table>
<thead>
<tr>
<th>pat.charAt(j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>dfa[][][j]</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

- mismatch transition (back up)
- match transition (increment)
- halt state
KMP Substring Search – DFA Construction

• Whenever we have a mismatch at pat.charAt(j), we want to know what state the DFA would be if we were to back up the text index and rescan.
 – We don’t actually do the backup, we just want to restart the DFA as if we had done the backup.
 – The characters that would need to be rescanned are pat.charAt(1) through pat.charAt(j-1).
 – Since we already know these characters, we can figure out the state ahead of time!
KMP Substring Search – DFA Construction

dfa[pat.charAt(0)][0] = 1;
for (int X = 0, j = 1; j < M; j++) {
 for (int c = 0; c < R; c++) {
 dfa[c][j] = dfa[c][X];
 } //for
 dfa[pat.charAt(j)][j] = j+1;
 X = dfa[pat.charAt(j)][X];
} //for
KMP – DFA Construction – Visual

```
j | 0  
pat.charAt(j) | A  
| B  
| C  
dfa[][j] | 0  

X

j | 0 1  
pat.charAt(j) | A  B 
| A  1 
| B  2 
| C  0 
dfa[][j] | 0 1 

X

j | 0 1 2  
pat.charAt(j) | A  B  A 
| A  1 3 
| B  2 0 
| C  0 0 
dfa[][j] | 0 1 2 

X

```
KMP – DFA Construction – Visual
KMP – Analysis

• **Theorem:** Knuth-Morris-Pratt substring search accesses no more than $N + M$ characters for search for a pattern of length M in a text of length N.

• **Proof:** Immediate from the code
 – We access each pattern character once when computing \texttt{dfa[][]}.
 – We access each text character once (in the worst case) in \texttt{search()}.
Any Questions?