Last Time

• Shortest Path problems
 – Relaxation
 – Dijkstra’s Algorithm
 – Acyclic Shortest Path
 – Bellman-Ford Algorithm
Greedy Algorithms

• **Greedy algorithms** are a class of algorithms that always take the best available solution at each step, regardless of future consequences.
 – Prim’s Algorithm (Lazy and Eager)
 – Dijkstra’s Algorithm
 – Huffman coding
 – Selection sort
Greedy Algorithms

• Need to show two things:
 – **Correctness:** The algorithm produces an acceptable output (nothing new introduced, no data manipulated).
 • Usually trivial.
 – **Optimality:** The algorithm produces the best solution (no possible “better” output).
 • Somewhat more difficult.
Proof of Greedy Correctness

- **Theorem:** Algorithm A is correct/optimal.
- **Proof:** (by contradiction)
 - There exists some input i on which A doesn’t produce acceptable output.
 - Consider $A(i)$, the output of algorithm A on input i, and $OPT(i)$, the optimal/correct output for i.
 - Produce $OPT'(i)$ such that:
 - $OPT'(i)$ agrees with $A(i)$ for one more step.
 - $OPT'(i)$ is still an optimal/correct output.
 - OPT' is definitionally correct for one further step, so create an OPT'' that meets the same goals as OPT'.
 - Eventually, you have a chain $OPT \rightarrow OPT' \rightarrow OPT'' \rightarrow OPT''' \rightarrow \ldots \rightarrow A$. (Maintaining correctness, you get more like greedy with every new step.)
 - Now, look at OPT globally as “the correct solution that agrees with A for the most number of steps” (assumes that A is incorrect).
 - But, OPT' agrees with A for one more step than OPT, the “best” optimal solution. A contradiction! ■

- This is called an **Exchange Argument**.
Minimum Average Waiting Time

- **Input:** Jobs with processing times $P_1, P_2, P_3, \ldots, P_n$.
- **Output:** Order to execute the jobs to minimize average waiting time.

Example:
- Input: {7, 2, 4, 11}
 - Possible Output: (4, 11, 7, 2)
 - Waiting times: 4, 15, 22, 24; avg wait = 16.25
 - Optimal Output: (2, 4, 7, 11)
 - Waiting times: 2, 6, 13, 24; avg wait = 11.25
Minimum Average Waiting Time

• **Theorem:** Shortest Job First is correct.

• **Proof:** Assume to reach a contradiction that there exists an input i on which shortest job first is not correct.

• Let us consider:
 – $\text{SJF}(i) =$ output of Shortest Job First on input i
 – $\text{OPT}(i) =$ an optimal output
 – $\text{OPT}'(i) =$ a new optimal output that agrees with $\text{SJF}(i)$ for one further step
 – $k =$ the first greedy choice that $\text{OPT}(i)$ disagreed with
Minimum Average Waiting Time

- SJF(i)
- OPT(i)
- OPT'(i)_swap
- OPT'(i)_shift
Minimum Average Waiting Time

- **Correctness**: OPT’(i) is still a permutation of the input i.

- **Optimality**: Need to argue that the average waiting time hasn’t increased.
 - Jobs before the swap/shift won’t have different waiting times.
 - Jobs after the swap/shift won’t have different waiting times.
 - Only need to consider jobs between A and B.
Minimum Average Waiting Time

- \(\text{OPT}(i) \)
 - B
 - A
 - X
 - A
 - B

- \(\Delta X = (\text{size}A - \text{size}B) \leq 0 \)
 - \(\text{size}A \leq \text{size}B \) by definition of Shortest Job First

- \(\Delta A = -X - B \)
- \(\Delta B = +X + A \)
- \(\Delta A + \Delta B = -X + X + A - B = A - B \leq 0. \)
- Therefore, \(A \leq B \). So, \(\text{OPT}'(i) \) is still correct.
Minimum Average Waiting Time

• So, we showed that:
 – OPT’(i) is both correct and optimal.
 – OPT’(i) matched A(i) for at least one more step than OPT(i) did.
 – We defined OPT(i) to be the solution that matched A(i) the longest.
 – OPT(i) != OPT’(i)

• Contradiction! □
Minimum Spanning Tree Problem

• Theorem: Kruskal’s Algorithm is correct.
• Proof: Assume to reach a contradiction that there exists an input i on which Kruskal’s Algorithm is not correct.
• Let us consider:
 – $\text{OPT}(i) =$ the optimal solution that agrees with Kruskal the longest
 – $\text{KRUSKAL}(i) =$ Kruskal’s output for input i
 – $e_1, e_2, \ldots, e_n =$ ordered edges such that $e_1 \leq e_2 \leq \ldots \leq e_n$
 – $k =$ first edge that $\text{KRUSKAL}(i)$ and $\text{OPT}(i)$ disagree on
 – $l =$ edge removed from $\text{OPT}(i)$ to remove a cycle
 – $\text{OPT}'(i) = \text{OPT}(i) + e_k - e_l$
Minimum Spanning Tree Problem

• Why do KRUSKAL(i) and OPT(i) disagree at k?

1. Kruskal skipped an edge that OPT took.
 • Can’t happen, because Kruskal skipped it for a reason.
 KRUSKAL(i) and OPT(i) chose the same edges up to point k, so if Kruskal skipped an edge, it’s because there already exists a path between the two endpoints and a cycle would occur.

2. Kruskal picked an edge that OPT skipped.
 • Sure, this can definitely happen.

• Add e_k and remove e_l from OPT(i) to form OPT’(i).
Minimum Spanning Tree Problem

• Cases to consider:

 1. There exists an e_l on the cycle formed by $\text{OPT}(i) + e_k$ such that $|e_l| \geq |e_k|$.
 • This is a contradiction, because $\text{OPT}'(i)$ agrees with $\text{KRUSKAL}(i)$ for one more step, breaking our definition of $\text{OPT}(i)$.

 2. All e_l on the cycle formed by the addition of e_k satisfy $|e_k| < |e_l|$.
 • This is a contraction, because Kruskal would definitionally have chosen e_k.

• Both cases result in a contradiction. ■
Any Questions?