Last Time

• Substring search
 – Given a pattern and a text sequence, find the pattern in the text
• Brute Force substring search
• KMP (Knuth-Morris-Pratt) substring search
• Boyer-Moore substring search
• Rabin-Karp substring search
Data Compression Problem Overview

• Compression:
 – **Input 1:** A sequence of bits
 – **Output 1:** A smaller sequence of bits
 – Transforms a bitstream B into a compressed version $C(B)$

• Expansion
 – **Input 2:** A sequence of bits
 – **Output 2:** An expanded sequence of bits
 – Transforms the compressed $C(B)$ back into the original B
Data Compression Challenges

• Compression must be reversible (lossless compression), or at least a very close approximation (lossy compression)
• Compression must be computationally efficient (time is obvious, what about space?)
• Compression must work for all inputs, not just a subset (working at the bit level)
Data Compression Challenges

• Compression must work for all inputs, not just a subset. (really?)

• **Theorem:** No algorithm can compress every bitstream.

• **Proof:** Suppose that you have an algorithm that can compress every bitstream. Then, you could use the algorithm to compress its output to get a still shorter bitstream, and continue until you have a bitstream of length 0. This conclusion is absurd, therefore no algorithm can compress every bitstream.

• Compression [algorithms] must [run on] all inputs, not just a subset.
Huffman Compression

• **Idea:** Use a small number of bits for frequent characters, and a large number of bits for rare characters.

• **ABRACADABRA!**
 – In ASCII (7 bits per char):
 1000001100001010100101000001100001110000
 01100010010000011000010100100011100001 (84 bits)
Huffman Compression

• ABRACADABRA!
 – **Variable-Length** \((A=0, B=1, R=00, C=01, D=10, !=11)\): 01000010100100011 (17 bits)
 • Problem – Not reversible, could also be CRRDDCRCB.
 – **Prefix-Free Variable-Length** – No character code is the prefix of another.
 – \((A=0, B=1111, C=110, D=100, R=1110, !=101)\): 011111110011001000111111100101 (30 bits)

• Now we just need to figure out how to generate prefix-free variable-length character codes...
Huffman Compression – Tries

The codeword table and trie representation for different characters are shown. The compressed bitstrings for the sequences are also presented.
Huffman Compression – Steps

• Compression:
 1. Build an encoding trie (hardest step)
 2. Write the trie for use in expansion
 3. Use the trie to encode the bitstream

• Expansion:
 1. Read the trie
 2. Use the trie to decode the bitstream
Huffman Compression – Construct Trie

class Node implements Comparable<Node> {
 char ch;
 int freq;
 final Node left, right;

 Node(char c, int f, Node l, Node r) {
 ch = c; freq = f;
 left = l; right = r;
 } //Node (constructor)

 boolean isLeaf() {
 return (left == null) && (right == null);
 } //isLeaf

 int compareTo(Node that) {
 return this.freq - that.freq;
 } //compareTo

} //Node (class)
Huffman Compression – Construct Trie

Node buildTrie(int[] freq) {
 MinPQ<Node> pq = min MinPQ<Node>();
 for (char c = 0; c < R; c++) {
 if (freq[c] > 0) {
 pq.insert(new Node(c, freq[c], null, null));
 } //if
 } //for
 while (pq.size() > 1) {
 Node x = pq.delMin();
 Node y = pq.delMin();
 Node parent = new Node(‘\0’, x.freq + y.freq, x, y);
 pq.insert(parent);
 } //while
 return pq.delMin();
} //buildTrie
Huffman Compression – Construct Trie

- Two tries with smallest weights
- New parent for those two tries
Huffman Compression – Construct Trie

Huffman code for the character stream “it was the best of times it was the worst of times LF”
void writeTrie(Node x) {
 if (x.isLeaf()) {
 BinaryStdOut.write(true);
 BinaryStdOut.write(x.ch, 8);
 return;
 } //if
 BinaryStdOut.write(false);
 writeTrie(x.left);
 writeTrie(x.right);
} //writeTrie
Huffman Compression – Writing Trie

preorder traversal

leaves

internal nodes
Huffman Compression – Compression

String[] buildCode(Node root) {
 String[] st = new String[R];
 buildCode(st, root, "")
 return st;
} //buildCode

void buildCode(String[] st, Node x, String s) {
 if (x.isLeaf()) {
 st[x.ch] = s;
 return;
 } //if
 buildCode(st, x.left, s+‘0’);
 buildCode(st, x.right, s+‘1’);
} //buildCode (recursive)
void compress(char[] input) {
 for (int i = 0; i < input.length; i++) {
 String code = st[input[i]];
 for (int j = 0; j < code.length; j++) {
 if (code.charAt(j) == '1') {
 BinaryStdOut.write(true);
 } else {
 BinaryStdOut.write(false);
 } //if
 } //for
 } //for
} //compress
Huffman Compression – Analysis

• **Theorem:** For any prefix-free code, the length of the encoded bitstring is equal to the weighted external path length of the corresponding trie.

• **Proof:** From the construction of the trie:

 – The depth of each leaf is the number of bits used to encode the character in the leaf.

 – Thus, the weighted external path length is the length of the encoded bitstring – the sum over all letters of the number of occurrences times the number of bits per occurrence.
Any Questions?