CMPSC250
Lecture 32: Greedy Algorithms

Prof. John Wenskovitch
04/15/2016
Last Time

- Shortest Path problems
 - Relaxation
 - Dijkstra’s Algorithm
 - Acyclic Shortest Path
 - Bellman-Ford Algorithm
Greedy Algorithms

• **Greedy algorithms** are a class of algorithms that always take the best available solution at each step, and that locally best solution also turns out to be the globally best solution.
 – Prim’s Algorithm (Lazy and Eager)
 – Dijkstra’s Algorithm
 – Huffman coding
 – Selection sort
Greedy Algorithms

• Need to show two things:
 – **Correctness:** The algorithm produces an acceptable output (nothing new introduced, no data manipulated).
 • Usually trivial.
 – **Optimality:** The algorithm produces the best solution (no possible “better” output).
 • Somewhat more difficult.
Proof of Greedy Correctness

• **Theorem:** Algorithm A is correct/optimal.

• **Proof:** *(by contradiction)*
 – Assume to reach a contradiction that there exists some input \(i \) on which A doesn’t produce acceptable output.
 – Consider \(A(i) \), the output of algorithm A on input \(i \), and \(\text{OPT}(i) \), the optimal/correct output for \(i \).
 – Produce \(\text{OPT}'(i) \) such that:
 • \(\text{OPT}'(i) \) agrees with \(A(i) \) for one more step.
 • \(\text{OPT}'(i) \) is still an optimal/correct output.
 – \(\text{OPT}' \) is definitionally correct for one further step, so create an \(\text{OPT}'' \) that meets the same goals as \(\text{OPT}' \). *(Sort of an induction step)*
 – Eventually, you have a chain \(\text{OPT} \rightarrow \text{OPT}' \rightarrow \text{OPT}'' \rightarrow \text{OPT}''' \rightarrow \ldots \rightarrow A \).
 (Maintaining correctness, you get more like greedy with every new step.)
 – Now, look at \(\text{OPT} \) globally as “the correct solution that agrees with A for the most number of steps” (assumes that A is incorrect).
 – But, \(\text{OPT}' \) agrees with A for one more step than \(\text{OPT} \), the “best” optimal solution. A contradiction! ■

• This is called an **Exchange Argument**.
Minimum Spanning Tree Problem

• **Theorem:** Kruskal’s Algorithm is correct.

• **Proof:** Assume to reach a contradiction that there exists an input i on which Kruskal’s Algorithm is not correct.

• Let us consider:
 – $\text{OPT}(i) =$ the optimal solution that agrees with Kruskal the longest
 – $\text{KRUSKAL}(i) =$ Kruskal’s output for input i
 – $e_1, e_2, \ldots, e_n =$ ordered edges such that $e_1 \leq e_2 \leq \ldots \leq e_n$
 – $k =$ first edge that $\text{KRUSKAL}(i)$ and $\text{OPT}(i)$ disagree on
 – $l =$ edge removed from $\text{OPT}(i)$ (possibly to remove a cycle)
 – $\text{OPT}'(i) =$ $\text{OPT}(i) + e_k - e_l$
Minimum Spanning Tree Problem

• Why do KRUSKAL\(i\) and OPT\(i\) disagree at \(k\)?

 1. Kruskal skipped an edge that OPT took.
 • Can’t happen, because Kruskal skipped it for a reason. KRUSKAL\(i\) and OPT\(i\) chose the same edges up to point \(k\), so if Kruskal skipped an edge, it’s because there already exists a path between the two endpoints and a cycle would occur.

 2. Kruskal picked an edge that OPT skipped.
 • Sure, this can definitely happen.

• Add \(e_k\) and remove \(e_l\) from OPT\(i\) to form OPT’\(i\).
Minimum Spanning Tree Problem

• Cases to consider:
 1. There exists an e_l on the cycle formed by $OPT(i) + e_k$ such that $|e_l| \geq |e_k|$.
 • This is a contradiction, because $OPT'(i)$ agrees with $KRUSKAL(i)$ for one more step, breaking our definition of $OPT(i)$.
 2. All e_l on the cycle formed by the addition of e_k satisfy $|e_k| < |e_l|$.
 • This is a contraction, because Kruskal would definitionally have chosen e_k.

• Both cases result in a contradiction. ■
Minimum Average Waiting Time

- **Input:** Jobs with processing times $P_1, P_2, P_3, ..., P_n$.
- **Output:** Order to execute the jobs to minimize average waiting time.

Example:
- Input: {7, 2, 4, 11}
- Possible Output: (4, 11, 7, 2)
 - Waiting times: 4, 15, 22, 24; avg wait = 16.25
- Optimal Output: (2, 4, 7, 11)
 - Waiting times: 2, 6, 13, 24; avg wait = 11.25
Minimum Average Waiting Time

• **Theorem:** Shortest Job First provides an optimal and correct solution to this problem.

• **Proof:** Assume to reach a contradiction that there exists an input \(i \) on which shortest job first is not correct.

• Let us consider:
 – \(\text{SJF}(i) = \) output of Shortest Job First on input \(i \)
 – \(\text{OPT}(i) = \) an optimal output
 – \(\text{OPT}'(i) = \) a new optimal output that agrees with \(\text{SJF}(i) \) for one further step
 – \(k = \) the first greedy choice that \(\text{OPT}(i) \) disagreed with
Minimum Average Waiting Time

- **SJF(i)**

 \[A \quad B \]

- **OPT(i)**

 \[B \quad A \]

- **OPT'(i)_swap**

 \[B \quad A \]

- **OPT'(i)_shift**

 \[B \quad \uparrow \quad A \]

\[k \]
Minimum Average Waiting Time

- **Correctness**: OPT'(i) is still a permutation of the input i.

- **Optimality**: Need to argue that the average waiting time hasn’t increased.
 - Jobs before the swap/shift won’t have different waiting times.
 - Jobs after the swap/shift won’t have different waiting times.
 - Only need to consider jobs between A and B.
Minimum Average Waiting Time

- OPT(i)
 - B
 - X
 - A
- OPT’(i)
 - B
 - X
 - A

- \(\Delta X = (\text{sizeB} - \text{sizeA}) \)
 - sizeA \leq \text{sizeB} by definition of Shortest Job First
- \(\Delta A = +X + B \)
- \(\Delta B = -X - A \)
- \(\Delta A + \Delta B + \Delta X = -X + X - A + B + B - A = 2B - 2A \geq 0. \)
- A contradiction, because doing this swap increases runtime! The only way for OPT’ to be optimal is if A=B.
Minimum Average Waiting Time

- So, we showed that:
 - OPT’(i) is correct but not optimal unless A=B.
 - OPT’(i) matched A(i) for at least one more step than OPT(i) did.
 - We defined OPT(i) to be the solution that matched A(i) the longest.

- Contradiction! ■
Any Questions?