Last Time

• Dynamic Programming
 – Solving a problem recursively by divide-and-conquer, then converting the algorithm to a bottom-up, iterative, array-based algorithm.
 • Fibonacci
 • Longest Common Subsequence problem
 • Subset Sum problem
 – Solving a problem by stepping through a recursive tree constructed by either taking or not taking some choice at each step.
 • Subset Sum problem
Reductions

• **Reduction** – Given problems A and B, we say that “A is reducible to B” (written as $A \leq B$) if there exists an algorithm to solve A that lacks only code for B.

 – We solve problem A by:
 1. Reading the input for A
 2. Converting it (if necessary) to the input for B
 3. Solving problem B
 4. Converting the output (if necessary) to suit problem A
 5. Wrap up problem A
Element Uniqueness Problem

• Input: Numbers $x_1, x_2, ..., x_n$
• Output: 0 if $\exists i, j$ such that $x_i = x_j$ and $i \neq j$
 1 otherwise

• Example Input: 54, 23, 42, -16, 17, 23, 95
• Example Output: 0
Element Uniqueness Problem

• Solution 1: Compare every element to every other element, and break if any two (different) elements are equal.
 – Complexity: $O(n^2)$
Element Uniqueness Problem

• Solution 2: Sort the list, then compare each element to the element which follows.
 – Complexity: $O(n \times \log(n))$

Element Uniqueness Sorting

Read input $O(n)$ Sort input $O(n \times \log(n))$

Run comparisons $O(n)$
Reductions are Easy to Get Backwards

• NewProblem ≤ TravelingSalesman
 – Efficient work
 – Efficient work
 – Efficient work
 – <Call TravelingSalesman, O(n!)>
Reductions are Easy to Get Backwards

• TravellingSalesman ≤ NewProblem
 – Efficient work
 – Efficient work
 – Efficient work
 – <Call NewProblem, O(n)>
 – Efficient work
 – Efficient work

• Now we have an (imaginary) efficient TS solution!
Matrix Multiplication

• Fact: Despite a lot of effort, no one knows a \(O(n^2) \) time algorithm for matrix multiplication.

• Problem 1: Matrix Multiplication
 – **Input:** \(n \times n \) matrices A, B
 – **Output:** A*B

• Problem 2: Matrix Squaring
 – **Input:** Matrix C
 – **Output:** \(C^2 = C*C \)
Matrix Multiplication

• To get an algorithm for squaring, reduce squaring to multiplication.

Problem SQUARE
read C
D = MULT(C,C)
output D

• Issue: Could there be an easier solution for squaring, one that doesn’t make use of multiplication?
Matrix Multiplication

• To show that squaring is at least as hard as multiplication, reduce multiplication to squaring.

Problem MULT
read A, B

construct C = \begin{bmatrix} B & 0 \\ A & 0 \end{bmatrix}

D = SQUARE(C)

output D[1][0]

D = \begin{bmatrix} B^2 & 0 \\ AB & 0 \end{bmatrix}
Matrix Multiplication

• To show that squaring is at least as hard as multiplication, reduce multiplication to squaring.

\[
\begin{align*}
\text{MULT} & \quad \text{SQUARE} \\
\text{Read A, B} & \quad \text{Create C} \\
\text{Output D}[1][0] & \quad \text{Resulting computation D}
\end{align*}
\]

\[O(n^2)\]
Some Time Complexity Classes

- **Class P** – The class of languages that are solvable in polynomial time.

- **Class NP** – The class of languages that have polynomial time verifiers, and are not solvable in polynomial time without introducing nondeterminism.

- **Verifier** – An algorithm V for language A, where $A = \{ w \mid V$ accepts $\langle w, c \rangle \text{ for some string } c \}$.
Is P = NP?

• Probably not, but we haven’t proven it yet.
• If you prove it, you’ll be set for life.
• (Don’t waste your time trying to prove it.)
The PATH Problem

\[\text{PATH} = \{ (G, s, t) | G \text{ is a directed graph that has a directed path from } s \text{ to } t \} \]

- **Theorem:** \(\text{PATH} \in P \)
- **Proof:** We prove this theorem by presenting a polynomial time algorithm that decides \(\text{PATH} \).

\[M = \text{"On input } (G, s, t), \text{ where } G \text{ is a directed graph with nodes } s \text{ and } t:\]

1. Place a mark on node \(s \).
2. Repeat the following until no additional nodes are marked:
 3. Scan all the edges of \(G \). If an edge \((a,b)\) is found going from a marked node \(a \) to an unmarked node \(b \), mark node \(b \).
 4. If \(t \) is marked, **accept**. Otherwise, **reject**.

- Steps 1 and 4 are only run once. Step 3 runs at most \(m \) times, where graph \(G \) has \(m \) nodes. Thus, the total number of steps is \(1+1+m = O(m) \), which is polynomial time. ■
The HAMPATH Problem

\[HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \} \]

- **Theorem:** \(HAMPATH \in NP \)
- **Proof:** We prove this theorem by presenting a polynomial time algorithm that decides \(HAMPATH \) nondeterministically.

 \(N = \) “On input \(\langle G, s, t \rangle \), where \(G \) is a directed graph with nodes \(s \) and \(t \):

 1. Write a list of \(m \) numbers, \(p_1, \ldots, p_m \), where \(m \) is the number of nodes in \(G \). Each number in the list is nondeterministically selected to be between 1 and \(m \).

 2. Check for repetitions in the list. If any are found, reject.

 3. Check whether \(s = p_1 \) and \(t = p_m \). If either fail, reject.

 4. For each \(i \) between 1 and \(m-1 \), check whether \((p_i, p_{i+1}) \) is an edge of \(G \). If any are not, reject. Otherwise, accept.”

- All steps run in nondeterministic polytime. Now we need to show that a verifier exists that runs in deterministic polytime:

 \(V = \) “On input \(\langle w, c \rangle \), where \(w \) and \(c \) are strings:

 1. Simulate input \(w \) on NTM \(N \) and do same.”
NP-Completeness

- **NP-Completeness** – There exist certain problems in NP whose individual complexity is related to that of the entire class.
 - (In other words, each problem in this NP-Complete class is reducible to each other problem in this NP-Complete class.)
 - If you find an algorithm to solve Traveling Salesman, you have a method to break RSA cryptography!
 - SubsetSum is actually NP-Complete!
Any Questions?