Data Abstraction
Algorithm Analysis (4.2, 4.3)

Janyl Jumadinova

October 19-23, 2020
Analysis of Algorithms

Seven functions that often appear in algorithm analysis:

1. Constant ≈ 1
2. Logarithmic $\approx \log n$
3. Linear $\approx n$
4. $N - \log N \approx n \log n$
5. Quadratic $\approx n^2$
6. Cubic $\approx n^3$
7. Exponential $\approx 2^n$
In a log-log chart, the slope of the line corresponds to the **growth rate**.
Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.
Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

```java
/** Returns the maximum value of a nonempty array of numbers. */
public static double arrayMax(double[] data) {
    int n = data.length;
    double currentMax = data[0];  // assume first entry is biggest (for now)
    for (int j=1; j < n; j++) {    // consider all other entries
        if (data[j] > currentMax)  // if data[j] is biggest thus far...
            currentMax = data[j];  // record it as the current max
    }
    return currentMax;
}
```
Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

```java
1  /** Returns the maximum value of a nonempty array of numbers. */
2  public static double arrayMax(double[] data) {
3      int n = data.length;
4      double currentMax = data[0];               // assume first entry is biggest (for now)
5      for (int j=1; j < n; j++)                 // consider all other entries
6         if (data[j] > currentMax)             // if data[j] is biggest thus far...
7             currentMax = data[j];             // record it as the current max
8      return currentMax;                      //
9  }
```

Step 3: 2 ops, 4: 2 ops, 5: 2n ops, 6: 2n ops, 7: 0 to n ops, 8: 1 op
Estimating Running Time

2 + 2 + 2n + 2n + 0 ... n + 1

Then, algorithm `arrayMax` executes:

- $5n + 5$ primitive operations in the worst case
- $4n + 5$ in the best case
Let $a = \text{Time taken by the fastest primitive operation.}$
Estimating Running Time

- Let \(a \) = Time taken by the fastest primitive operation.
- Let \(b \) = Time taken by the slowest primitive operation.
Estimating Running Time

- Let a = Time taken by the fastest primitive operation.
- Let b = Time taken by the slowest primitive operation.
- Let $T(n)$ be worst-case time of `arrayMax`.

Then,

$$a(4n + 5) \leq T(n) \leq b(5n + 5)$$

Hence, the running time $T(n)$ is bounded by two linear functions.
Estimating Running Time

- Let $a =$ Time taken by the fastest primitive operation.
- Let $b =$ Time taken by the slowest primitive operation.
- Let $T(n)$ be worst-case time of arrayMax.
- Then, $a(4n + 5) \leq T(n) \leq b(5n + 5)$
Let $a =$ Time taken by the fastest primitive operation.

Let $b =$ Time taken by the slowest primitive operation.

Let $T(n)$ be worst-case time of `arrayMax`.

Then, $a(4n + 5) \leq T(n) \leq b(5n + 5)$

Hence, the running time $T(n)$ is bounded by two linear functions.
Changing the hardware/ software environment

- Affects \(T(n) \) by a constant factor, but
- Does not alter the growth rate of \(T(n) \)

The linear growth rate of the running time \(T(n) \) is an intrinsic property of algorithm arrayMax.
Why Growth Rate Matters

<table>
<thead>
<tr>
<th>if runtime is...</th>
<th>time for n + 1</th>
<th>time for 2n</th>
<th>time for 4n</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \lg n$</td>
<td>$c \lg (n + 1)$</td>
<td>$c (\lg n + 1)$</td>
<td>$c(\lg n + 2)$</td>
</tr>
<tr>
<td>cn</td>
<td>$c (n + 1)$</td>
<td>$2cn$</td>
<td>$4cn$</td>
</tr>
<tr>
<td>$cn \lg n$</td>
<td>$\sim cn \lg n$</td>
<td>$2cn \lg n + 2cn$</td>
<td>$4cn \lg n + 4cn$</td>
</tr>
<tr>
<td>$cn^2 + cn$</td>
<td>$\sim cn^2 + 2cn$</td>
<td>$4cn^2$</td>
<td>$16cn^2$</td>
</tr>
<tr>
<td>$cn^3 + 3cn^2$</td>
<td>$\sim cn^3 + 3cn^2$</td>
<td>$8cn^3$</td>
<td>$64cn^3$</td>
</tr>
<tr>
<td>$c2^n$</td>
<td>$c2^{n+1}$</td>
<td>$c2^{2n}$</td>
<td>$c2^{4n}$</td>
</tr>
</tbody>
</table>

runtime quadruples when problem size doubles
Comparison of Two Algorithms

- **InsertionSort** is \(\frac{n^2}{4} \)
- **MergeSort** is \(2n\log n \)

![Graph of Insertion Sort vs Merge Sort](image)
Comparison of Two Algorithms

- InsertionSort is $\frac{n^2}{4}$
- MergeSort is $2n \log n$

To sort a million items?
- InsertionSort takes roughly 70 hours
- MergeSort takes roughly
Comparison of Two Algorithms

- InsertionSort is $\frac{n^2}{4}$
- MergeSort is $2n\log n$

To sort a million items?

- InsertionSort takes roughly **70 hours**
- MergeSort takes roughly **40 seconds**
Comparison of Two Algorithms

- InsertionSort is $\frac{n^2}{4}$
- MergeSort is $2n \log n$

To sort a million items?

- InsertionSort takes roughly 70 hours
- MergeSort takes roughly 40 seconds

This is a slow machine, but if 100 x as fast then it is 40 minutes versus less than 0.5 seconds.
Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.
Big-Oh Examples

- $7n - 2$ is $O(n)$
Big-Oh Examples

- \(7n - 2\) is \(O(n)\) need \(c > 0\) and \(n_0 \geq 1\) such that \(7n - 2 \leq cn\) for \(n \geq n_0\)
 this is true for \(c = 7\) and \(n_0 = 1\)
Big-Oh Examples

- $7n - 2$ is $O(n)$ need $c > 0$ and $n_0 \geq 1$ such that $7n - 2 \leq cn$ for $n \geq n_0$
 - this is true for $c = 7$ and $n_0 = 1$
- $3n^3 + 20n^2 + 5$ is $O(n^3)$
Big-Oh Examples

- $7n - 2$ is $O(n)$ need $c > 0$ and $n_0 \geq 1$ such that $7n - 2 \leq cn$ for $n \geq n_0$
 this is true for $c = 7$ and $n_0 = 1$

- $3n^3 + 20n^2 + 5$ is $O(n^3)$ need $c > 0$ and $n_0 \geq 1$ such that $3n^3 + 20n^2 + 5 \leq cn^3$ for $n \geq n_0$
 this is true for $c = 4$ and $n_0 = 21$
Big-Oh Examples

- $7n - 2$ is $O(n)$ need $c > 0$ and $n_0 \geq 1$ such that $7n - 2 \leq cn$ for $n \geq n_0$

 this is true for $c = 7$ and $n_0 = 1$

- $3n^3 + 20n^2 + 5$ is $O(n^3)$ need $c > 0$ and $n_0 \geq 1$ such that

 $3n^3 + 20n^2 + 5 \leq cn^3$ for $n \geq n_0$

 this is true for $c = 4$ and $n_0 = 21$

- $3\log n + 5$ is $O(\log n)$
Big-Oh Examples

- $7n - 2$ is $O(n)$ need $c > 0$ and $n_0 \geq 1$ such that $7n - 2 \leq cn$ for $n \geq n_0$
 this is true for $c = 7$ and $n_0 = 1$

- $3n^3 + 20n^2 + 5$ is $O(n^3)$ need $c > 0$ and $n_0 \geq 1$ such that $3n^3 + 20n^2 + 5 \leq cn^3$ for $n \geq n_0$
 this is true for $c = 4$ and $n_0 = 21$

- $3\log n + 5$ is $O(\log n)$ need $c > 0$ and $n_0 \geq 1$ such that $3\log n + 5 \leq c\log n$ for $n \geq n_0$
 this is true for $c = 8$ and $n_0 = 2$
Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the growth rate of a function.

The statement "$f(n)$ is $O(g(n))$" means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$.
The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

To perform the asymptotic analysis:

1. We find the worst-case number of primitive operations executed as a function of the input size.
The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

To perform the asymptotic analysis:

1. We find the worst-case number of primitive operations executed as a function of the input size.
2. We express this function with big-Oh notation.
The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

To perform the asymptotic analysis:
1. We find the worst-case number of primitive operations executed as a function of the input size.
2. We express this function with big-Oh notation.

Example: We say that algorithm `arrayMax` “runs in O(n) time” Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.