scikit-learn

- Popular Python machine learning library
- Designed to be a well documented and approachable for non-specialist
- Built on top of NumPy and SciPy
- `scikit-learn` can be easily installed with `pip` or `conda`

 `pip install scikit-learn`

 `conda install scikit-learn`
Data representation in scikit-learn

- Training dataset is described by a pair of matrices, one for the input data and one for the output.
- Most commonly used data formats are a NumPy ndarray or a Pandas DataFrame / Series.
Training dataset is described by a pair of matrices, one for the input data and one for the output.

Most commonly used data formats are a NumPy ndarray or a Pandas DataFrame / Series.

Each row of these matrices corresponds to one sample of the dataset.

Each column represents a quantitative piece of information that is used to describe each sample (called “features”).
Data representation in scikit-learn

Feature Matrix (X)

- $n_{\text{features}} \rightarrow$
- n_{samples}

Target Vector (y)

- n_{samples}
- n_{samples}

image credit: James Bourbeau
Features in scikit-learn

feature Module
https://scikit-image.org/docs/dev/api/skimage.feature.html
Local Binary Pattern Feature Extraction

Introduced by Ojala et. al in “Multiresolution Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns”

1. Check whether the points surrounding the central point are greater than or less than the central point → get LBP codes (stored as array).
2. Calculate a histogram of LBP codes as a feature vector.

![Image of local binary patterns](https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html)

image credit:

https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
Local Binary Pattern Feature Extraction

- Example: The histogram of the LBP outcome is used as a measure to classify textures.

![Image of Local Binary Pattern examples](https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html)
Estimators in scikit-learn

- Algorithms are implemented as **estimator** classes in scikit-learn.
- Each estimator in scikit-learn is extensively documented (e.g. the KNeighborsClassifier documentation) with API documentation, user guides, and example usages.
- A **model** is an instance of one of these estimator classes.
Training a model

fit then predict

Fit the model
model.fit(X, y)

Get model predictions
y_pred = model.predict(X)
from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier(max_depth=2)
clf.fit(X, y)

image credit: James Bourbeau
Many commonly used performance metrics are built into the metrics subpackage in scikit-learn. However, a user-defined scoring function can be created using the `sklearn.metrics.make_scorer` function.

```python
# Classification metrics
from sklearn.metrics import (accuracy_score, precision_score, recall_score, f1_score, log_loss)

# Regression metrics
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

y_pred = [0, 2, 1, 3, 1]
y_true = [0, 1, 1, 3, 2]

accuracy_score(y_true, y_pred)
0.6

mean_squared_error(y_true, y_pred)
0.4
```
Separate training and testing sets

- scikit-learn has a convenient `train_test_split` function that randomly splits a dataset into a testing and training set.

```python
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)

print(f'X.shape = {X.shape}"
print(f'X_test.shape = {X_test.shape}"
print(f'X_train.shape = {X_train.shape}"

X.shape = (150, 2)
X_test.shape = (30, 2)
X_train.shape = (120, 2)
```

image credit: James Bourbeau
Model selection - hyperparameter optimization

- Model **hyperparameter** values (parameters whose values are set before the learning process begins) can be used to avoid under- and over-fitting.

Under-fitting - model isn't sufficiently complex enough to properly model the dataset at hand.

Over-fitting - model is too complex and begins to learn the noise in the training dataset.
Model selection - hyperparameter optimization

- Model hyperparameter values (parameters whose values are set before the learning process begins) can be used to avoid under- and over-fitting.
- **Under-fitting** - model isn’t sufficiently complex enough to properly model the dataset at hand.
- **Over-fitting** - model is too complex and begins to learn the noise in the training dataset.

![Graphs showing underfitting and overfitting](https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html)
Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample. It uses a limited sample in order to estimate how the model is expected to perform in general when used to make predictions on data not used during the training of the model. The parameter k refers to the number of groups that a given data sample is to be split into.
k-fold cross validation

1. Shuffle the dataset randomly.
2. Split the dataset into k groups.
3. For each unique group:
 3.1. Take the group as a hold out or test data set.
 3.2. Take the remaining groups as a training data set.
 3.3. Fit a model on the training set and evaluate it on the test set.
 3.4. Retain the evaluation score and discard the model.
4. Summarize the skill of the model using the sample of model evaluation scores.
k-fold cross validation

![Diagram of k-fold cross validation](https://scikit-learn.org/stable/modules/cross_validation.html)
k-fold cross validation

James Bourbeau
from sklearn.model_selection import cross_validate

clf = DecisionTreeClassifier(max_depth=2)
scores = cross_validate(clf, X_train, y_train,
 scoring='accuracy', cv=10,
 return_train_score=True)

print(scores.keys())
test_scores = scores['test_score']
train_scores = scores['train_score']
print(test_scores)
print(train_scores)

print('n10-fold CV scores:')
print(f'training score = {np.mean(train_scores)} +/- {np.std(train_scores)}')
print(f'validation score = {np.mean(test_scores)} +/- {np.std(test_scores)}')

{'fit_time', 'score_time', 'test_score', 'train_score'}
[0.78571429 0.64285714 0.83333333 0.66666667 1. 0.91666667
 0.54545455 0.72727273 0.81818182 0.72727273]
[0.79245283 0.79245283 0.76851852 0.80555556 0.75 0.77777778
 0.79816514 0.79816514 0.78899083 0.79816514]

10-fold CV scores:
training score = 0.787024375076132 +/- 0.016054059411612778
validation score = 0.7663419913419914 +/- 0.12718955265834164

image credit: James Bourbeau