Multi-robot Communication

Robotic Agents © Allegheny College

Janyl Jumadinova

October 17, 2019
Overview of the Multi-Agent(Robot) System

Communication in Multi-Agent(Robot) Systems
An **Agent**

An agent is a computer system that is capable of independent action on behalf of its user or owner.
A **Multi-Agent System**

A multi-agent system is a system that consists of a number of agents which interact with one-another.
A Multi-Agent System

A multi-agent system is a system that consists of a number of agents which interact with one-another.
Multi-Agent Systems

Multiagent Systems are based on autonomous, intelligent agents

- Autonomy
- Reactivity
- Proactivity
- Social Ability
Typical Structure of a Multiagent System

Working Together

- Cooperative Distributed Problem Solving
- Task Sharing
- Result Sharing
- Coordination
Typical Structure of a Multiagent System

Making Decisions

- Multiagent Interactions
 - Preferences and Utilities
 - Techniques to find choices (e.g., Nash Equilibria)

- Making Group Decisions
 - Voting Procedures
 - Auctions
Add hardware constraints (noise)
Remove assumptions (movements)
Objectives of Communication

Enable robots to exchange state and environmental information with a minimum bandwidth requirement.
Multi-Robot Communication Taxonomy

By Dudek (1993)

1. Communication range
2. Communication topology
3. Communication bandwidth
1. Communication range

- None
- Near
- Infinite
2. Communication topology

- Broadcast
- Addressed
- Tree
- Graph
3. Communication bandwidth

- High (i.e., communication is essentially “free”)
- Motion-related (i.e., motion and communication costs are about the same)
- Low (i.e., communication costs are very high)
- Zero (i.e., no communication is available)
Nature of communication

One definition of communication:

“An interaction whereby a signal is generated by an emitter and interpreted by a receiver”.

- Emission and reception may be separated in space and/or time.
- Signaling and interpretation may be innate or learned.
One definition of communication:

“An interaction whereby a signal is generated by an emitter and interpreted by a receiver”.

- Emission and reception may be separated in space and/or time.
- Signaling and interpretation may be innate or learned.

Group Work: Multi-robot application design!
Explicit Communication

Defined as those actions that have the expressed goal of transferring information from one robot to another.
Explicit Communication

Defined as those actions that have the expressed goal of transferring information from one robot to another. Usually involves:

- Intermittent requests.
- Status information.
- Updates of sensory or model information.
Explicit Communication

Need to determine:

- What to communicate
- When to communicate
- How to communicate
- To whom to communicate
Explicit Communication

Communications medium has significant impact:

- Range
- Bandwidth
- Rate of failure
Implicit Communication

- Defined as communication “through the world”
- Two primary types:
 - Robot senses aspect of world that is a side-effect of another robot’s actions
 - Robot senses another robot’s actions
Implicit Communication

- Defined as communication “through the world”
- Two primary types:
 - Robot senses aspect of world that is a side-effect of another robot’s actions
 - Robot senses another robot’s actions

Group Work: Multi-robot application communication type!
Three Key Considerations in Multi-Robot Communication

- Is communication needed at all?
- Over what range should communication be permitted?
- What should the information content be?
Communication is not free, and can be unreliable. In hostile environments, electronic countermeasures may be in effect.

Major roles of communication:

- **Synchronization of action**: ensuring coordination in task ordering.
- **Information exchange**: sharing different information gained from different perspectives.
- **Negotiations**: who does what?
Communication is not free, and can be unreliable.
In hostile environments, electronic countermeasures may be in effect.
Communication is not free, and can be unreliable.

In hostile environments, electronic countermeasures may be in effect.

Major roles of communication:

- **Synchronization of action**: ensuring coordination in task ordering.
Communication is not free, and can be unreliable.
In hostile environments, electronic countermeasures may be in effect.

Major roles of communication:

- **Synchronization of action**: ensuring coordination in task ordering.
- **Information exchange**: sharing different information gained from different perspectives.
Communication is not free, and can be unreliable.
In hostile environments, electronic countermeasures may be in effect.

Major roles of communication:

- **Synchronization of action**: ensuring coordination in task ordering.
- **Information exchange**: sharing different information gained from different perspectives.
- **Negotiations**: who does what?
Many studies have shown:

- Significantly higher group performance using communication.
- However, communication does not always need to be explicit.
Tacit assumption: wider range is better.
But, not necessarily the case.
Over What Range Should Communication Be Permitted?

Tacit assumption: wider range is better.
But, not necessarily the case.

- Studies have shown: higher communication range can lead to decreased societal performance.
Over What Range Should Communication Be Permitted?

One approach for balancing communication range and cost.

- Probabilistic approach that minimizes communication delay time between robots.
- Balance out communication flow (input, processing capacity, and output) to obtain optimal range.
What Should the Information Content Be?

Research studies have shown:

- Explicit communication improves performance significantly in tasks involving little implicit communication.
Research studies have shown:

- Explicit communication improves performance significantly in tasks involving little implicit communication.
- Communication is not essential in tasks that include implicit communication.
Research studies have shown:

- Explicit communication improves performance significantly in tasks involving little implicit communication.
- Communication is not essential in tasks that include implicit communication.
- More complex communication strategies (e.g., goals) often offer little benefit over basic (state) information \(\rightarrow \) “display” behavior is a rich communication method.
What Should the Information Content Be?

Research studies have shown:

- Explicit communication improves performance significantly in tasks involving little implicit communication.
- Communication is not essential in tasks that include implicit communication.
- More complex communication strategies (e.g., goals) often offer little benefit over basic (state) information → “display” behavior is a rich communication method.

Group Work: Multi-robot application communication considerations!
How to Communicate?

WiFi?

Bluetooth?

Bluetooth technology operates in the unlicensed industrial, scientific and medical (ISM) band at 2.4 to 2.485 GHz at a nominal rate of 1600 hops/sec.

The 2.4 GHz ISM band is available and unlicensed in most countries.
How to Communicate?

WiFi?
Bluetooth?

- Bluetooth technology operates in the unlicensed industrial, scientific and medical (ISM) band at 2.4 to 2.485 GHz at a nominal rate of 1600 hops/sec.
- The 2.4 GHz ISM band is available and unlicensed in most countries.
The operating range depends on the device class:

- **Class 3 radios** – have a range of up to 1 meter or 3 feet.
- **Class 2 radios** – most commonly found in mobile devices have a range of 10 meters or 33 feet.
- **Class 1 radios** – used primarily in industrial use cases have a range of 100 meters or 300 feet.
Bluetooth

- In order to use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth profiles.
- The profiles define the possible applications.
Bluetooth

- In order to use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth profiles.
- The profiles define the possible applications.
- Bluetooth profiles are general behaviors through which Bluetooth enabled devices communicate with other devices.
In order to use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth **profiles**.

The profiles define the possible applications.

Bluetooth profiles are general behaviors through which Bluetooth enabled devices communicate with other devices.

Bluetooth technology defines a wide range of profiles that describe many different types of use cases.
Bluetooth

- A piconet network is a group of Bluetooth devices joined together into a short range network by Bluetooth links.
- When a Bluetooth device has established a link to one or more other devices, a piconet has been formed.
Bluetooth

- A **piconet network** is a group of Bluetooth devices joined together into a short range network by Bluetooth links.
- When a Bluetooth device has established a link to one or more other devices, a piconet has been formed.
- The device that initiates a connection acts as the **master**.
- The other devices are **slaves**.