PROJECT OBJECTIVES

We present an automated text-mining tool written in Python to measure the technical responsibility of students in computer science courses.

- Our tool automatically collects reflection documents written by students from their GitHub repositories.
- Then, using natural language processing analyzes them for ethical considerations based on pre-determined questions and criteria.
- The tool helps to track the progression of student ethical understanding and sense of social responsibility by analyzing writing samples across the computer science curriculum.

TEACHING RESPONSIBLE COMPUTING

Teaching responsible computing is critical in developing software that produces a positive impact on our society, economy, and individuals.

- Each application course in computer science at Allegheny College integrates ethical considerations in its pedagogy.
- Broad learning categories include topics of internet health, ethics and responsible computing customized to each application course.
- The delivery of these concepts include readings, discussions, class and lab assignments with heavy software development emphasis.
- As an output, students write reflection reports to demonstrate their understanding of relevant issues, ability to analyze information, and capacity for integrating the understanding and analysis of ethical thinking into their own work.

TEXT MINING TOOL TO DETERMINE ETHICAL PEDAGOGY

Our tool first obtains student reflection documents (as Markdown files) stored in AWS.

- Markdown parser goes through the Markdown files and constructs a dictionary.
- Natural language pre-processing is done with SpaCy with the output stored into a pandas data frame for further analysis.
- Five categories of analysis are included that can be queried and customized. The result of each analysis is stored in a separate pandas data frame.

FEATURES

- Our tool can be run through a command-line or a graphical interface.
- Visualization was developed using Altair, with the generated graphs displayed using Streamlit.

SAMPLE RESULTS

- **Word Frequency Analysis**

 - Overall most frequent words in the directory

 - Figure: 4 Word Frequency Analysis

- **Document Similarity**

 - Similarity between each student’s document

 - Figure: 5 Document Similarity

![Figure: 1. This project is supported by the Responsible Computer Science Challenge, funded by Omidyar Network, Mozilla, Schmidt Futures and Craig Newmark Philanthropies.](image_url)